001024739 001__ 1024739
001024739 005__ 20250203215418.0
001024739 0247_ $$2doi$$a10.1021/acs.langmuir.3c00294
001024739 0247_ $$2ISSN$$a0743-7463
001024739 0247_ $$2ISSN$$a1520-5827
001024739 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02405
001024739 0247_ $$2pmid$$a37058525
001024739 0247_ $$2WOS$$aWOS:000974305400001
001024739 037__ $$aFZJ-2024-02405
001024739 082__ $$a540
001024739 1001_ $$0P:(DE-HGF)0$$aHardt, Michael$$b0
001024739 245__ $$aPhoto-Responsive Control of Adsorption and Structure Formation at the Air–Water Interface with Arylazopyrazoles
001024739 260__ $$aWashington, DC$$bACS Publ.$$c2023
001024739 3367_ $$2DRIVER$$aarticle
001024739 3367_ $$2DataCite$$aOutput Types/Journal article
001024739 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1738572693_9199
001024739 3367_ $$2BibTeX$$aARTICLE
001024739 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024739 3367_ $$00$$2EndNote$$aJournal Article
001024739 520__ $$aSmart interfaces that are responsive to external triggers such as light are of great interest for the development of responsive or adaptive materials and interfaces. Using alkyl-arylazopyrazole butyl sulfonate surfactants (alkyl-AAP) that can undergo E/Z photoisomerization when irradiated with green (E) and UV (Z) lights, we demonstrate through a combination of experiments and computer simulations that there can be surprisingly large changes in surface tension and in the molecular structure and order at air–water interfaces. Surface tensiometry, vibrational sum-frequency generation (SFG) spectroscopy, and neutron reflectometry (NR) are applied to the study of custom-synthesized AAP surfactants with octyl- and H-terminal groups at air–water interfaces as a function of their bulk concentration and E/Z configuration. Upon photoswitching, a drastic influence of the alkyl chain on both the surface activity and the responsiveness of interfacial surfactants is revealed from changes in the surface tension, γ, where the largest changes in γ are observed for octyl-AAP (Δγ ∼ 23 mN/m) in contrast to H-AAP with Δγ < 10 mN/m. Results from vibrational SFG spectroscopy and NR show that the interfacial composition and the molecular order of the surfactants drastically change with E/Z photoisomerization and surface coverage. Indeed, from analysis of the S–O (head group) and C–H vibrational bands (hydrophobic tail), a qualitative analysis of orientational and structural changes of interfacial AAP surfactants is provided. The experiments are complemented by resolution of thermodynamic parameters such as equilibrium constants from ultra-coarse-grained simulations, which also capture details like island formation and interaction parameters of interfacial molecules. Here, the interparticle interaction (“stickiness”) and the interaction with the surface are adjusted, closely reflecting experimental conditions.
001024739 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024739 536__ $$0G:(GEPRIS)433682494$$aDFG project G:(GEPRIS)433682494 - SFB 1459: Intelligente Materie – Von responsiven zu adaptiven Nanosystemen (433682494)$$c433682494$$x1
001024739 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024739 7001_ $$0P:(DE-HGF)0$$aBusse, Franziska$$b1
001024739 7001_ $$0P:(DE-HGF)0$$aRaschke, Simon$$b2
001024739 7001_ $$aHonnigfort, Christian$$b3
001024739 7001_ $$00000-0003-0385-2383$$aCarrascosa-Tejedor, Javier$$b4
001024739 7001_ $$aWenk, Paul$$b5
001024739 7001_ $$00000-0002-7412-8571$$aGutfreund, Philipp$$b6
001024739 7001_ $$00000-0002-6296-314X$$aCampbell, Richard A.$$b7
001024739 7001_ $$0P:(DE-Juel1)176646$$aHeuer, Andreas$$b8$$ufzj
001024739 7001_ $$00000-0002-6539-1693$$aBraunschweig, Björn$$b9$$eCorresponding author
001024739 773__ $$0PERI:(DE-600)2005937-1$$a10.1021/acs.langmuir.3c00294$$gVol. 39, no. 16, p. 5861 - 5871$$n16$$p5861 - 5871$$tLangmuir$$v39$$x0743-7463$$y2023
001024739 8564_ $$uhttps://juser.fz-juelich.de/record/1024739/files/Hardt_etal_AAP_Surfactants_R2.docx$$yOpenAccess
001024739 909CO $$ooai:juser.fz-juelich.de:1024739$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
001024739 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176646$$aForschungszentrum Jülich$$b8$$kFZJ
001024739 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024739 9141_ $$y2024
001024739 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22
001024739 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-22
001024739 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-22
001024739 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLANGMUIR : 2022$$d2023-10-22
001024739 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-22
001024739 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22
001024739 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-22
001024739 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024739 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-22
001024739 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-22
001024739 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-22
001024739 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-22$$wger
001024739 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22
001024739 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024739 980__ $$ajournal
001024739 980__ $$aVDB
001024739 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024739 980__ $$aUNRESTRICTED
001024739 9801_ $$aFullTexts
001024739 981__ $$aI:(DE-Juel1)IMD-4-20141217