001     1024758
005     20250203103148.0
024 7 _ |a 10.1002/aesr.202300153
|2 doi
024 7 _ |a 10.34734/FZJ-2024-02424
|2 datacite_doi
024 7 _ |a WOS:001079310200001
|2 WOS
037 _ _ |a FZJ-2024-02424
082 _ _ |a 333.7
100 1 _ |a Herbers, Lukas
|0 0000-0002-6534-546X
|b 0
245 _ _ |a The Influence of Polyethylene Oxide Degradation in Polymer‐Based Electrolytes for NMC and Lithium Metal Batteries
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712673337_18040
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A multilayered ternary solid polymer electrolyte (TSPE) is presented. First, the influence of polyethylene oxide degradation on cell failure, development of subsequent volatile degradation products, and cell impedance is analyzed. The low electrochemical stability window/oxidative stability (≥3.8 V) results in side-chain oxidation and loss of active material. Subsequently, electrolyte stability is improved and a thin-film (≤50 μm) TSPE with three functional layers is developed to match the wide-ranging electrolyte requirements toward Li metal anodes and different cathode materials like LiNi0.6Mn0.2Co0.2O2 and LiFePO4 (NCM622, LFP). The high-voltage stability of ≥4.75 V makes the TSPE a promising candidate in high-voltage applications. Because of high Coulombic efficiencies in NMC622‖Li metal (99.7%) and LFP‖Li metal (99.9%) cells, the presented electrolyte enables stable long-term cycling with great capacity retention of 86% and 94%, respectively. The temperature stability of >300 °C and the capability to prevent high surface area Li and dendrite formation (even at an areal capacity utilization of >40 mAh cm−2) contribute to high safety under a wide range of conditions.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Minář, Jaroslav
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Stuckenberg, Silvan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Küpers, Verena
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Berghus, Debbie
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Nowak, Sascha
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 6
|u fzj
700 1 _ |a Bieker, Peter
|0 P:(DE-Juel1)180777
|b 7
|e Corresponding author
773 _ _ |a 10.1002/aesr.202300153
|g Vol. 4, no. 12, p. 2300153
|0 PERI:(DE-600)3010017-3
|n 12
|p 2300153
|t Advanced energy & sustainability research
|v 4
|y 2023
|x 2699-9412
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024758/files/Adv%20Energy%20and%20Sustain%20Res%20-%202023%20-%20Herbers%20-%20The%20Influence%20of%20Polyethylene%20Oxide%20Degradation%20in%20Polymer%E2%80%90Based%20Electrolytes.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024758/files/Adv%20Energy%20and%20Sustain%20Res%20-%202023%20-%20Herbers%20-%20The%20Influence%20of%20Polyethylene%20Oxide%20Degradation%20in%20Polymer%E2%80%90Based%20Electrolytes.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024758/files/Adv%20Energy%20and%20Sustain%20Res%20-%202023%20-%20Herbers%20-%20The%20Influence%20of%20Polyethylene%20Oxide%20Degradation%20in%20Polymer%E2%80%90Based%20Electrolytes.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024758/files/Adv%20Energy%20and%20Sustain%20Res%20-%202023%20-%20Herbers%20-%20The%20Influence%20of%20Polyethylene%20Oxide%20Degradation%20in%20Polymer%E2%80%90Based%20Electrolytes.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024758/files/Adv%20Energy%20and%20Sustain%20Res%20-%202023%20-%20Herbers%20-%20The%20Influence%20of%20Polyethylene%20Oxide%20Degradation%20in%20Polymer%E2%80%90Based%20Electrolytes.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024758
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)180777
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-08-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ENERG SUST RES : 2022
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-09-30T11:01:43Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-09-30T11:01:43Z
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-09-30T11:01:43Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ADV ENERG SUST RES : 2022
|d 2023-08-28
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-28
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21