001024771 001__ 1024771
001024771 005__ 20250203103149.0
001024771 0247_ $$2doi$$a10.1002/cssc.202300445
001024771 0247_ $$2ISSN$$a1864-5631
001024771 0247_ $$2ISSN$$a1864-564X
001024771 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02437
001024771 0247_ $$2pmid$$a37606900
001024771 0247_ $$2WOS$$aWOS:001052181100001
001024771 037__ $$aFZJ-2024-02437
001024771 082__ $$a540
001024771 1001_ $$aRamireddy, Thrinathreddy$$b0
001024771 245__ $$aEvaluating a Dual‐Ion Battery with an Antimony‐Carbon Composite Anode
001024771 260__ $$aWeinheim$$bWiley-VCH$$c2023
001024771 3367_ $$2DRIVER$$aarticle
001024771 3367_ $$2DataCite$$aOutput Types/Journal article
001024771 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712662811_18042
001024771 3367_ $$2BibTeX$$aARTICLE
001024771 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024771 3367_ $$00$$2EndNote$$aJournal Article
001024771 500__ $$aThis work was supported through a DiscoveryProject(DP210102806), the work also received the support from the Australian Research Council (ACT,ACT,AU) Australian Research Hub, grant number IH200100035, DAAD Grant Nr. 57446388, MWIDE Grant: “GrEEn”(313-W044A)
001024771 520__ $$aDual-ion batteries (DIBs) are attracting attention due to their high operating voltage and promise in stationary energy storage applications. Among various anode materials, elements that alloy and dealloy with lithium are assumed to be prospective in bringing higher capacities and increasing the energy density of DIBs. In this work, antimony in the form of a composite with carbon (Sb−C) is evaluated as an anode material for DIB full cells for the first time. The behaviour of graphite||Sb−C cells is assessed in highly concentrated electrolytes in the absence and presence of an electrolyte additive (1 % vinylene carbonate) and in two cell voltage windows (2–4.5 V and 2–4.8 V). Sb−C full cells possess maximum estimated specific energies of 290 Wh/kg (based on electrode masses) and 154 Wh/kg (based on the combined mass of electrodes and active salt). The work expands the knowledge on the operation of DIBs with non-graphitic anodes.
001024771 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024771 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024771 7001_ $$aWrogemann, Jens Matthies$$b1
001024771 7001_ $$aHaneke, Lukas$$b2
001024771 7001_ $$aSultana, Irin$$b3
001024771 7001_ $$aKremer, Felipe$$b4
001024771 7001_ $$0P:(DE-HGF)0$$aIan Chen, Ying$$b5
001024771 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b6$$ufzj
001024771 7001_ $$0P:(DE-HGF)0$$aPlacke, Tobias$$b7
001024771 7001_ $$00000-0002-4851-839X$$aGlushenkov, Alexey M.$$b8$$eCorresponding author
001024771 773__ $$0PERI:(DE-600)2411405-4$$a10.1002/cssc.202300445$$gVol. 16, no. 21, p. e202300445$$n21$$pe202300445$$tChemSusChem$$v16$$x1864-5631$$y2023
001024771 8564_ $$uhttps://juser.fz-juelich.de/record/1024771/files/ChemSusChem%20-%202023%20-%20Ramireddy%20-%20Evaluating%20a%20Dual%E2%80%90Ion%20Battery%20with%20an%20Antimony%E2%80%90Carbon%20Composite%20Anode.pdf$$yOpenAccess
001024771 8564_ $$uhttps://juser.fz-juelich.de/record/1024771/files/ChemSusChem%20-%202023%20-%20Ramireddy%20-%20Evaluating%20a%20Dual%E2%80%90Ion%20Battery%20with%20an%20Antimony%E2%80%90Carbon%20Composite%20Anode.gif?subformat=icon$$xicon$$yOpenAccess
001024771 8564_ $$uhttps://juser.fz-juelich.de/record/1024771/files/ChemSusChem%20-%202023%20-%20Ramireddy%20-%20Evaluating%20a%20Dual%E2%80%90Ion%20Battery%20with%20an%20Antimony%E2%80%90Carbon%20Composite%20Anode.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024771 8564_ $$uhttps://juser.fz-juelich.de/record/1024771/files/ChemSusChem%20-%202023%20-%20Ramireddy%20-%20Evaluating%20a%20Dual%E2%80%90Ion%20Battery%20with%20an%20Antimony%E2%80%90Carbon%20Composite%20Anode.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024771 8564_ $$uhttps://juser.fz-juelich.de/record/1024771/files/ChemSusChem%20-%202023%20-%20Ramireddy%20-%20Evaluating%20a%20Dual%E2%80%90Ion%20Battery%20with%20an%20Antimony%E2%80%90Carbon%20Composite%20Anode.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024771 909CO $$ooai:juser.fz-juelich.de:1024771$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001024771 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b6$$kFZJ
001024771 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024771 9141_ $$y2024
001024771 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001024771 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
001024771 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-25
001024771 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEMSUSCHEM : 2022$$d2023-10-25
001024771 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-25$$wger
001024771 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001024771 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
001024771 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
001024771 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024771 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMSUSCHEM : 2022$$d2023-10-25
001024771 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001024771 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001024771 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024771 9801_ $$aFullTexts
001024771 980__ $$ajournal
001024771 980__ $$aVDB
001024771 980__ $$aUNRESTRICTED
001024771 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024771 981__ $$aI:(DE-Juel1)IMD-4-20141217