001     1024771
005     20250203103149.0
024 7 _ |a 10.1002/cssc.202300445
|2 doi
024 7 _ |a 1864-5631
|2 ISSN
024 7 _ |a 1864-564X
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02437
|2 datacite_doi
024 7 _ |a 37606900
|2 pmid
024 7 _ |a WOS:001052181100001
|2 WOS
037 _ _ |a FZJ-2024-02437
082 _ _ |a 540
100 1 _ |a Ramireddy, Thrinathreddy
|b 0
245 _ _ |a Evaluating a Dual‐Ion Battery with an Antimony‐Carbon Composite Anode
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712662811_18042
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This work was supported through a DiscoveryProject(DP210102806), the work also received the support from the Australian Research Council (ACT,ACT,AU) Australian Research Hub, grant number IH200100035, DAAD Grant Nr. 57446388, MWIDE Grant: “GrEEn”(313-W044A)
520 _ _ |a Dual-ion batteries (DIBs) are attracting attention due to their high operating voltage and promise in stationary energy storage applications. Among various anode materials, elements that alloy and dealloy with lithium are assumed to be prospective in bringing higher capacities and increasing the energy density of DIBs. In this work, antimony in the form of a composite with carbon (Sb−C) is evaluated as an anode material for DIB full cells for the first time. The behaviour of graphite||Sb−C cells is assessed in highly concentrated electrolytes in the absence and presence of an electrolyte additive (1 % vinylene carbonate) and in two cell voltage windows (2–4.5 V and 2–4.8 V). Sb−C full cells possess maximum estimated specific energies of 290 Wh/kg (based on electrode masses) and 154 Wh/kg (based on the combined mass of electrodes and active salt). The work expands the knowledge on the operation of DIBs with non-graphitic anodes.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wrogemann, Jens Matthies
|b 1
700 1 _ |a Haneke, Lukas
|b 2
700 1 _ |a Sultana, Irin
|b 3
700 1 _ |a Kremer, Felipe
|b 4
700 1 _ |a Ian Chen, Ying
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 6
|u fzj
700 1 _ |a Placke, Tobias
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Glushenkov, Alexey M.
|0 0000-0002-4851-839X
|b 8
|e Corresponding author
773 _ _ |a 10.1002/cssc.202300445
|g Vol. 16, no. 21, p. e202300445
|0 PERI:(DE-600)2411405-4
|n 21
|p e202300445
|t ChemSusChem
|v 16
|y 2023
|x 1864-5631
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024771/files/ChemSusChem%20-%202023%20-%20Ramireddy%20-%20Evaluating%20a%20Dual%E2%80%90Ion%20Battery%20with%20an%20Antimony%E2%80%90Carbon%20Composite%20Anode.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024771/files/ChemSusChem%20-%202023%20-%20Ramireddy%20-%20Evaluating%20a%20Dual%E2%80%90Ion%20Battery%20with%20an%20Antimony%E2%80%90Carbon%20Composite%20Anode.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024771/files/ChemSusChem%20-%202023%20-%20Ramireddy%20-%20Evaluating%20a%20Dual%E2%80%90Ion%20Battery%20with%20an%20Antimony%E2%80%90Carbon%20Composite%20Anode.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024771/files/ChemSusChem%20-%202023%20-%20Ramireddy%20-%20Evaluating%20a%20Dual%E2%80%90Ion%20Battery%20with%20an%20Antimony%E2%80%90Carbon%20Composite%20Anode.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024771/files/ChemSusChem%20-%202023%20-%20Ramireddy%20-%20Evaluating%20a%20Dual%E2%80%90Ion%20Battery%20with%20an%20Antimony%E2%80%90Carbon%20Composite%20Anode.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024771
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CHEMSUSCHEM : 2022
|d 2023-10-25
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-25
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMSUSCHEM : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21