001024777 001__ 1024777
001024777 005__ 20250203103150.0
001024777 0247_ $$2doi$$a10.1149/1945-7111/acf164
001024777 0247_ $$2ISSN$$a0013-4651
001024777 0247_ $$2ISSN$$a0096-4743
001024777 0247_ $$2ISSN$$a0096-4786
001024777 0247_ $$2ISSN$$a1945-6859
001024777 0247_ $$2ISSN$$a1945-7111
001024777 0247_ $$2ISSN$$a2156-7395
001024777 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02443
001024777 0247_ $$2WOS$$aWOS:001057230800001
001024777 037__ $$aFZJ-2024-02443
001024777 082__ $$a660
001024777 1001_ $$00000-0001-5543-2992$$aRoth, Thomas$$b0
001024777 245__ $$aTransient Self-Discharge after Formation in Lithium-Ion Cells: Impact of State-of-Charge and Anode Overhang
001024777 260__ $$aBristol$$bIOP Publishing$$c2023
001024777 3367_ $$2DRIVER$$aarticle
001024777 3367_ $$2DataCite$$aOutput Types/Journal article
001024777 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712663079_18040
001024777 3367_ $$2BibTeX$$aARTICLE
001024777 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024777 3367_ $$00$$2EndNote$$aJournal Article
001024777 500__ $$aUnterstützt durch BMBF Grant: 03XP0296D und die TUM
001024777 520__ $$aA fast determination of cell quality after formation is challenging due to transient effects in the self-discharge measurement. This work investigated the self-discharge of NMC622/graphite single-layer pouch cells with varying anode dimensions to differentiate between SEI growth and anode overhang equalization processes. The transient self-discharge was measured directly after formation via voltage decay and for 20 weeks of calendar storage at three states-of-charge (SOC), 10%, 30%, and 50%. The transient behavior persisted for the entire measurement duration, even at a low SOC. Still, the low SOC minimized the impact of SEI growth and anode overhang equalization compared to moderate SOCs. Evaluating the coulombic efficiency from cycle aging showed a distinct capacity loss for the first cycle after storage, indicating further SEI growth, which stabilized in subsequent cycles. The aged capacity after cycling showed no significant dependence on the calendar storage, which further promotes fast self-discharge characterization at low SOC.
001024777 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024777 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024777 7001_ $$00000-0001-5905-3308$$aStreck, Luiza$$b1
001024777 7001_ $$00009-0008-8979-2847$$aMujanovic, Nedim$$b2
001024777 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b3
001024777 7001_ $$00000-0001-8892-8978$$aNiehoff, Philip$$b4
001024777 7001_ $$00000-0003-0964-1405$$aJossen, Andreas$$b5$$eCorresponding author
001024777 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/1945-7111/acf164$$gVol. 170, no. 8, p. 080524 -$$n8$$p080524 -$$tJournal of the Electrochemical Society$$v170$$x0013-4651$$y2023
001024777 8564_ $$uhttps://juser.fz-juelich.de/record/1024777/files/Transient%20Self-Discharge%20after%20Formation%20in%20Lithium-Ion%20Cells%20-%20Impact%20of%20State-of-Charge%20and%20Anode%20Overhang.pdf$$yOpenAccess
001024777 8564_ $$uhttps://juser.fz-juelich.de/record/1024777/files/Transient%20Self-Discharge%20after%20Formation%20in%20Lithium-Ion%20Cells%20-%20Impact%20of%20State-of-Charge%20and%20Anode%20Overhang.gif?subformat=icon$$xicon$$yOpenAccess
001024777 8564_ $$uhttps://juser.fz-juelich.de/record/1024777/files/Transient%20Self-Discharge%20after%20Formation%20in%20Lithium-Ion%20Cells%20-%20Impact%20of%20State-of-Charge%20and%20Anode%20Overhang.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024777 8564_ $$uhttps://juser.fz-juelich.de/record/1024777/files/Transient%20Self-Discharge%20after%20Formation%20in%20Lithium-Ion%20Cells%20-%20Impact%20of%20State-of-Charge%20and%20Anode%20Overhang.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024777 8564_ $$uhttps://juser.fz-juelich.de/record/1024777/files/Transient%20Self-Discharge%20after%20Formation%20in%20Lithium-Ion%20Cells%20-%20Impact%20of%20State-of-Charge%20and%20Anode%20Overhang.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024777 909CO $$ooai:juser.fz-juelich.de:1024777$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001024777 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b3$$kFZJ
001024777 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024777 9141_ $$y2024
001024777 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-22
001024777 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-22
001024777 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-22
001024777 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001024777 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-22
001024777 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-22
001024777 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-22
001024777 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024777 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2022$$d2023-10-22
001024777 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-22
001024777 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-22
001024777 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-22
001024777 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024777 9801_ $$aFullTexts
001024777 980__ $$ajournal
001024777 980__ $$aVDB
001024777 980__ $$aUNRESTRICTED
001024777 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024777 981__ $$aI:(DE-Juel1)IMD-4-20141217