001     1024778
005     20250203103150.0
024 7 _ |a 10.1002/batt.202300284
|2 doi
024 7 _ |a 10.34734/FZJ-2024-02444
|2 datacite_doi
024 7 _ |a WOS:001039746300001
|2 WOS
037 _ _ |a FZJ-2024-02444
082 _ _ |a 540
100 1 _ |a Künne, Sven
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Hybrid High‐Voltage LiNi 0.5 Mn 1.5 O 4 /Graphite Cathodes Enabling Rechargeable Batteries with Simultaneous Anion‐ and Cation Storage
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712663149_18044
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Unterstützt durch den Grant: “GrEEn”(313-W044A)
520 _ _ |a A hybrid cathode concept that targets combining the specific advantages of Li-ion batteries and dual-ion batteries is proposed. LiNi0.5Mn1.5O4 (LNMO), (de)inserting Li+, and graphite, capable to (de)intercalate PF6− present in the electrolyte, are combined in one cathode, aiming for synergy effects due to the presence of two electrochemically active species to overcome rate limitations caused by electrolyte depletion. Hybrid cathodes of different compositions and designs are prepared and investigated regarding their properties and the storage mechanism using electrochemical analyses combined with operando XRD and extensive materials characterization, including scanning electron microscopy and energy-dispersive X-ray spectroscopy. Finally, hybrid cathodes with higher areal capacity are prepared and investigated regarding rate performance. Model-based analysis of the results reveals design criteria and material properties required to achieve synergistic effects between the components in hybrid cathodes. These insights lay the foundation for a new type of battery with advantageous properties in terms of cost, environmental friendliness, and electrochemical performance.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hesper, Jakob Michael
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lein, Tobias
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Voigt, Karsten
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mikhailova, Daria
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Michaelis, Alexander
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 6
|u fzj
700 1 _ |a Placke, Tobias
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Heubner, Christian
|0 0000-0003-2581-6180
|b 8
|e Corresponding author
773 _ _ |a 10.1002/batt.202300284
|g Vol. 6, no. 9, p. e202300284
|0 PERI:(DE-600)2897248-X
|n 9
|p e202300284
|t Batteries & supercaps
|v 6
|y 2023
|x 2566-6223
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024778/files/Batteries%20Supercaps%20-%202023%20-%20K%C3%BCnne%20-%20Hybrid%20High%E2%80%90Voltage%20LiNi0%205Mn1%205O4%20Graphite%20Cathodes%20Enabling%20Rechargeable%20Batteries.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024778/files/Batteries%20Supercaps%20-%202023%20-%20K%C3%BCnne%20-%20Hybrid%20High%E2%80%90Voltage%20LiNi0%205Mn1%205O4%20Graphite%20Cathodes%20Enabling%20Rechargeable%20Batteries.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024778/files/Batteries%20Supercaps%20-%202023%20-%20K%C3%BCnne%20-%20Hybrid%20High%E2%80%90Voltage%20LiNi0%205Mn1%205O4%20Graphite%20Cathodes%20Enabling%20Rechargeable%20Batteries.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024778/files/Batteries%20Supercaps%20-%202023%20-%20K%C3%BCnne%20-%20Hybrid%20High%E2%80%90Voltage%20LiNi0%205Mn1%205O4%20Graphite%20Cathodes%20Enabling%20Rechargeable%20Batteries.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024778/files/Batteries%20Supercaps%20-%202023%20-%20K%C3%BCnne%20-%20Hybrid%20High%E2%80%90Voltage%20LiNi0%205Mn1%205O4%20Graphite%20Cathodes%20Enabling%20Rechargeable%20Batteries.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024778
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BATTERIES SUPERCAPS : 2022
|d 2023-08-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BATTERIES SUPERCAPS : 2022
|d 2023-08-25
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-08-25
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21