001     1024781
005     20250203103150.0
024 7 _ |a 10.1002/ente.202300405
|2 doi
024 7 _ |a 2194-4288
|2 ISSN
024 7 _ |a 2194-4296
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02447
|2 datacite_doi
024 7 _ |a WOS:001006403000001
|2 WOS
037 _ _ |a FZJ-2024-02447
082 _ _ |a 620
100 1 _ |a Epp, Alexander
|0 0000-0002-6202-0213
|b 0
|e Corresponding author
245 _ _ |a Simulative Investigation of Optimal Multiparameterized Cooling Plate Topologies for Different Battery System Configurations
260 _ _ |a Weinheim [u.a.]
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712663312_18042
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To design an effective battery thermal management system, multiple simulations with different levels of modeling, physics, and details are generally needed. However, complex and high-resolution models are time-consuming, both in terms of buildup and in computation time. Especially the fast-moving early-stage development phases demand all-in-one model approaches allowing for quick and efficient concept evaluations. To meet these requirements, herein, a lumped-mass modeling approach is proposed and a methodology for evaluating various liquid cooling plate topologies is derived. The framework aims to assist the volatile concept phase of battery system development in providing multidimensionally optimized cooling plate topologies. A novel modeling strategy preselects plate parameters using a reduction procedure that couples the transient models’ accuracy with the steady-state models’ computation time advantages. The results analyze different initial battery geometries, indicating significant deviations in their optimized cooling plate properties. Plate topologies are varied between their main construction design parameters: tube size and tube-to-tube distance. In addition to battery's mean temperature, further meaningful parameters like resulting volume flow are evaluated, compared, and discussed for the entire set of battery geometries. Subsequent sensitivity analyses show geometry-related optimal plate topologies depending on the cooling circuit performance, stressing the necessity for early-stage cooling plate investigations.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Rai, Sunny
|0 0009-0005-5562-4843
|b 1
700 1 _ |a van Ginneken, Finn
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Varchmin, Andreas
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Köhler, Jürgen
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Sauer, Dirk Uwe
|0 P:(DE-Juel1)172625
|b 5
773 _ _ |a 10.1002/ente.202300405
|g Vol. 11, no. 9, p. 2300405
|0 PERI:(DE-600)2700412-0
|n 9
|p 2300405
|t Energy technology
|v 11
|y 2023
|x 2194-4288
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024781/files/Energy%20Tech%20-%202023%20-%20Epp%20-%20Simulative%20Investigation%20of%20Optimal%20Multiparameterized%20Cooling%20Plate%20Topologies%20for%20Different.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024781/files/Energy%20Tech%20-%202023%20-%20Epp%20-%20Simulative%20Investigation%20of%20Optimal%20Multiparameterized%20Cooling%20Plate%20Topologies%20for%20Different.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024781/files/Energy%20Tech%20-%202023%20-%20Epp%20-%20Simulative%20Investigation%20of%20Optimal%20Multiparameterized%20Cooling%20Plate%20Topologies%20for%20Different.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024781/files/Energy%20Tech%20-%202023%20-%20Epp%20-%20Simulative%20Investigation%20of%20Optimal%20Multiparameterized%20Cooling%20Plate%20Topologies%20for%20Different.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024781/files/Energy%20Tech%20-%202023%20-%20Epp%20-%20Simulative%20Investigation%20of%20Optimal%20Multiparameterized%20Cooling%20Plate%20Topologies%20for%20Different.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024781
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172625
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ENERGY TECHNOL-GER : 2022
|d 2023-10-26
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-26
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21