Hauptseite > Publikationsdatenbank > Enhancement of the Surface Morphology of (Bi0.4Sb0.6)2Te3 Thin Films by In Situ Thermal Annealing > print |
001 | 1024782 | ||
005 | 20250203103151.0 | ||
024 | 7 | _ | |a 10.3390/nano13040763 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2024-02448 |2 datacite_doi |
024 | 7 | _ | |a 36839131 |2 pmid |
024 | 7 | _ | |a WOS:000940081700001 |2 WOS |
037 | _ | _ | |a FZJ-2024-02448 |
082 | _ | _ | |a 540 |
100 | 1 | _ | |a Mulder, Liesbeth |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Enhancement of the Surface Morphology of (Bi0.4Sb0.6)2Te3 Thin Films by In Situ Thermal Annealing |
260 | _ | _ | |a Basel |c 2023 |b MDPI |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1714582807_354 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a The study of the exotic properties of the surface states of topological insulators requires defect-free and smooth surfaces. This work aims to study the enhancement of the surface morphology of optimally doped, high-crystalline (Bi0.4Sb0.6)2Te3 films deposited by molecular beam epitaxy on Al2O3 (001) substrates. Atomic force microscopy shows that by employing an in situ thermal post anneal, the surface roughness is reduced significantly, and transmission electron microscopy reveals that structural defects are diminished substantially. Thence, these films provide a great platform for the research on the thickness-dependent properties of topological insulators. |
536 | _ | _ | |a 5234 - Emerging NC Architectures (POF4-523) |0 G:(DE-HGF)POF4-5234 |c POF4-523 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a van de Glind, Hanne |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Brinkman, Alexander |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Concepción, Omar |0 P:(DE-Juel1)188576 |b 3 |e Corresponding author |
773 | _ | _ | |a 10.3390/nano13040763 |g Vol. 13, no. 4, p. 763 - |0 PERI:(DE-600)2662255-5 |n 4 |p 763 - |t Nanomaterials |v 13 |y 2023 |x 2079-4991 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1024782/files/2023%20L.%20Mulder%20%28N%2013%2C%20763%29.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1024782/files/2023%20L.%20Mulder%20%28N%2013%2C%20763%29.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1024782/files/2023%20L.%20Mulder%20%28N%2013%2C%20763%29.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1024782/files/2023%20L.%20Mulder%20%28N%2013%2C%20763%29.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1024782/files/2023%20L.%20Mulder%20%28N%2013%2C%20763%29.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1024782 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)188576 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-523 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Neuromorphic Computing and Network Dynamics |9 G:(DE-HGF)POF4-5234 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-26 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2023-10-26 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANOMATERIALS-BASEL : 2022 |d 2023-10-26 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b NANOMATERIALS-BASEL : 2022 |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-04-12T15:01:18Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-04-12T15:01:18Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-26 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-26 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2023-10-26 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2023-10-26 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-26 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-04-12T15:01:18Z |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|