001024784 001__ 1024784
001024784 005__ 20250203103151.0
001024784 0247_ $$2doi$$a10.1016/j.jpowsour.2023.233207
001024784 0247_ $$2ISSN$$a0378-7753
001024784 0247_ $$2ISSN$$a1873-2755
001024784 0247_ $$2WOS$$aWOS:001007134200001
001024784 037__ $$aFZJ-2024-02450
001024784 082__ $$a620
001024784 1001_ $$0P:(DE-HGF)0$$aAlsheimer, Lennart$$b0
001024784 245__ $$aSuppressing gas evolution in Li4Ti5O12 -based pouch cells by high temperature formation
001024784 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2023
001024784 3367_ $$2DRIVER$$aarticle
001024784 3367_ $$2DataCite$$aOutput Types/Journal article
001024784 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712663783_18041
001024784 3367_ $$2BibTeX$$aARTICLE
001024784 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024784 3367_ $$00$$2EndNote$$aJournal Article
001024784 500__ $$aUnterstützt durch den Grant “MiKal” (03XP0240B) des BMBF
001024784 520__ $$aBatteries based on Li4Ti5O12 as negative active material, suffer from intense gas evolution during calendaric and cyclic aging, which notably limits their scope of application. In this study, gas evolution in multilayered Li4Ti5O12-based lithium-ion battery pouch cells was investigated during formation at different temperatures and upon subsequent cyclic aging. The results demonstrated that higher temperatures during formation procedure supported the formation of a stable protective decomposition layer on the Li4Ti5O12 composite electrode surface, which successfully prevented gas evolution during charge/discharge cycling without compromising the rate capability of Li4Ti5O12-based lithium-ion batteries. Cell formation at 20 °C and 40 °C showed a continuous increase in cell capacity during subsequent cyclic aging at 40 °C. However, cell formation at 60 °C led to a higher initial capacity without capacity increase during 40 °C cyclic aging. The results showed that this capacity increase is accompanied by gas evolution. To explain this behavior a model is proposed in which gas evolution and capacity increase are associated with a continuous growth and partial dissolution of the decomposition layer on the Li4Ti5O12 electrode during cyclic aging. Therefore, the high temperature formation approach could be the cornerstone for a cost-effective and easy commercialization of Li4Ti5O12-based cells.
001024784 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024784 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024784 7001_ $$00000-0003-2371-0411$$aHeidrich, Bastian$$b1
001024784 7001_ $$0P:(DE-HGF)0$$aPeschel, Christoph$$b2
001024784 7001_ $$00000-0002-2424-6609$$aDienwiebel, Iris$$b3
001024784 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4$$ufzj
001024784 7001_ $$00000-0002-8468-773X$$aBörner, Markus$$b5$$eCorresponding author
001024784 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2023.233207$$gVol. 575, p. 233207 -$$p233207 -$$tJournal of power sources$$v575$$x0378-7753$$y2023
001024784 8564_ $$uhttps://juser.fz-juelich.de/record/1024784/files/Suppressing%20gas%20evolution%20in%20Li4Ti5O12%20-based%20pouch%20cells%20by%20high%20temperature%20formation.pdf$$yRestricted
001024784 8564_ $$uhttps://juser.fz-juelich.de/record/1024784/files/Suppressing%20gas%20evolution%20in%20Li4Ti5O12%20-based%20pouch%20cells%20by%20high%20temperature%20formation.gif?subformat=icon$$xicon$$yRestricted
001024784 8564_ $$uhttps://juser.fz-juelich.de/record/1024784/files/Suppressing%20gas%20evolution%20in%20Li4Ti5O12%20-based%20pouch%20cells%20by%20high%20temperature%20formation.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001024784 8564_ $$uhttps://juser.fz-juelich.de/record/1024784/files/Suppressing%20gas%20evolution%20in%20Li4Ti5O12%20-based%20pouch%20cells%20by%20high%20temperature%20formation.jpg?subformat=icon-180$$xicon-180$$yRestricted
001024784 8564_ $$uhttps://juser.fz-juelich.de/record/1024784/files/Suppressing%20gas%20evolution%20in%20Li4Ti5O12%20-based%20pouch%20cells%20by%20high%20temperature%20formation.jpg?subformat=icon-640$$xicon-640$$yRestricted
001024784 909CO $$ooai:juser.fz-juelich.de:1024784$$pVDB
001024784 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
001024784 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024784 9141_ $$y2024
001024784 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-28
001024784 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-28
001024784 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-28
001024784 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-28
001024784 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-28
001024784 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-28
001024784 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2022$$d2023-08-28
001024784 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-28
001024784 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-28
001024784 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-28
001024784 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-28
001024784 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2022$$d2023-08-28
001024784 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024784 980__ $$ajournal
001024784 980__ $$aVDB
001024784 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024784 980__ $$aUNRESTRICTED
001024784 981__ $$aI:(DE-Juel1)IMD-4-20141217