001024786 001__ 1024786
001024786 005__ 20250203103151.0
001024786 0247_ $$2doi$$a10.1016/j.mssp.2023.107549
001024786 0247_ $$2ISSN$$a1369-8001
001024786 0247_ $$2ISSN$$a1873-4081
001024786 0247_ $$2WOS$$aWOS:000999874100001
001024786 037__ $$aFZJ-2024-02452
001024786 082__ $$a620
001024786 1001_ $$0P:(DE-HGF)0$$aFrauenrath, M.$$b0$$eCorresponding author
001024786 245__ $$aNanosecond laser annealing of pseudomorphic GeSn layers: Impact of Sn content
001024786 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2023
001024786 3367_ $$2DRIVER$$aarticle
001024786 3367_ $$2DataCite$$aOutput Types/Journal article
001024786 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714584943_3947
001024786 3367_ $$2BibTeX$$aARTICLE
001024786 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024786 3367_ $$00$$2EndNote$$aJournal Article
001024786 520__ $$aInteractions between nanosecond laser pulses and various Sn content pseudomorphic GeSn layers were investigated. The aim was to evaluate the suitability of Ultraviolet Nanosecond Laser Annealing (UV-NLA), with an excimer laser emitting at 308 nm and a pulse duration of 160 ns, for the fabrication of performant contacts in GeSn devices such as electrically pumped lasers. Atomic Force Microscopy (AFM) and X-Ray Diffraction (XRD) revealed similar melt regimes for GeSn on Ge and SiGe on Si. At the melt threshold, surface structures formed where small areas melted. We were then in the so-called surface melt regime. The surface structures’ shape changed with the Sn content. A similar trend was recently evidenced when submitting SiGe layers on Si to UV-NLA. The shape change was more drastic in GeSn than in SiGe. A larger built-in compressive strain because of a much larger size difference between Ge and Sn than Si and Ge might be the reason why. Time Resolved Reflectivity maps showed a more reflective plateau after the melt peak at an Energy Density (ED) of around 1.00 Jcm−2, stemming from the presence of a smooth Sn rich surface layer, as revealed by AFM images at the same ED. Stacked XRD maps outlined that this ED corresponded to the formation of rather high Sn content layers with Sn contents of up to 6.3%, i.e., concentrations significantly above the solid solubility limit, which is below 1%, at variance with conventional annealing processes at 450 °C. UV-NLA has thus opened a new processing window that might be useful for contact formation.
001024786 536__ $$0G:(DE-HGF)POF4-5234$$a5234 - Emerging NC Architectures (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001024786 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024786 7001_ $$0P:(DE-HGF)0$$aAcosta Alba, P.$$b1
001024786 7001_ $$0P:(DE-Juel1)188576$$aConcepción Díaz, Omar$$b2$$ufzj
001024786 7001_ $$0P:(DE-Juel1)177006$$aBae, J.-H.$$b3
001024786 7001_ $$0P:(DE-HGF)0$$aGauthier, N.$$b4
001024786 7001_ $$0P:(DE-HGF)0$$aNolot, E.$$b5
001024786 7001_ $$0P:(DE-HGF)0$$aVeillerot, M.$$b6
001024786 7001_ $$0P:(DE-HGF)0$$aBernier, N.$$b7
001024786 7001_ $$0P:(DE-Juel1)125569$$aBuca, D.$$b8
001024786 7001_ $$0P:(DE-HGF)0$$aHartmann, J.-M.$$b9
001024786 773__ $$0PERI:(DE-600)2029689-7$$a10.1016/j.mssp.2023.107549$$gVol. 163, p. 107549 -$$p107549 -$$tMaterials science in semiconductor processing$$v163$$x1369-8001$$y2023
001024786 909CO $$ooai:juser.fz-juelich.de:1024786$$pVDB
001024786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)188576$$aForschungszentrum Jülich$$b2$$kFZJ
001024786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177006$$aForschungszentrum Jülich$$b3$$kFZJ
001024786 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b8$$kFZJ
001024786 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5234$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001024786 9141_ $$y2024
001024786 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAT SCI SEMICON PROC : 2022$$d2023-08-29
001024786 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-29
001024786 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-29
001024786 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-08-29
001024786 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-08-29
001024786 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-29
001024786 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-29
001024786 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-29
001024786 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2023-08-29
001024786 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-29
001024786 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-29
001024786 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-29
001024786 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-29
001024786 920__ $$lyes
001024786 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
001024786 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
001024786 980__ $$ajournal
001024786 980__ $$aVDB
001024786 980__ $$aI:(DE-Juel1)PGI-9-20110106
001024786 980__ $$aI:(DE-82)080009_20140620
001024786 980__ $$aUNRESTRICTED