001     1024786
005     20250203103151.0
024 7 _ |a 10.1016/j.mssp.2023.107549
|2 doi
024 7 _ |a 1369-8001
|2 ISSN
024 7 _ |a 1873-4081
|2 ISSN
024 7 _ |a WOS:000999874100001
|2 WOS
037 _ _ |a FZJ-2024-02452
082 _ _ |a 620
100 1 _ |a Frauenrath, M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Nanosecond laser annealing of pseudomorphic GeSn layers: Impact of Sn content
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1714584943_3947
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Interactions between nanosecond laser pulses and various Sn content pseudomorphic GeSn layers were investigated. The aim was to evaluate the suitability of Ultraviolet Nanosecond Laser Annealing (UV-NLA), with an excimer laser emitting at 308 nm and a pulse duration of 160 ns, for the fabrication of performant contacts in GeSn devices such as electrically pumped lasers. Atomic Force Microscopy (AFM) and X-Ray Diffraction (XRD) revealed similar melt regimes for GeSn on Ge and SiGe on Si. At the melt threshold, surface structures formed where small areas melted. We were then in the so-called surface melt regime. The surface structures’ shape changed with the Sn content. A similar trend was recently evidenced when submitting SiGe layers on Si to UV-NLA. The shape change was more drastic in GeSn than in SiGe. A larger built-in compressive strain because of a much larger size difference between Ge and Sn than Si and Ge might be the reason why. Time Resolved Reflectivity maps showed a more reflective plateau after the melt peak at an Energy Density (ED) of around 1.00 Jcm−2, stemming from the presence of a smooth Sn rich surface layer, as revealed by AFM images at the same ED. Stacked XRD maps outlined that this ED corresponded to the formation of rather high Sn content layers with Sn contents of up to 6.3%, i.e., concentrations significantly above the solid solubility limit, which is below 1%, at variance with conventional annealing processes at 450 °C. UV-NLA has thus opened a new processing window that might be useful for contact formation.
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Acosta Alba, P.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Concepción Díaz, Omar
|0 P:(DE-Juel1)188576
|b 2
|u fzj
700 1 _ |a Bae, J.-H.
|0 P:(DE-Juel1)177006
|b 3
700 1 _ |a Gauthier, N.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Nolot, E.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Veillerot, M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Bernier, N.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Buca, D.
|0 P:(DE-Juel1)125569
|b 8
700 1 _ |a Hartmann, J.-M.
|0 P:(DE-HGF)0
|b 9
773 _ _ |a 10.1016/j.mssp.2023.107549
|g Vol. 163, p. 107549 -
|0 PERI:(DE-600)2029689-7
|p 107549 -
|t Materials science in semiconductor processing
|v 163
|y 2023
|x 1369-8001
909 C O |o oai:juser.fz-juelich.de:1024786
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)188576
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)177006
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)125569
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 0
914 1 _ |y 2024
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MAT SCI SEMICON PROC : 2022
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-29
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21