001024794 001__ 1024794
001024794 005__ 20240709081906.0
001024794 037__ $$aFZJ-2024-02460
001024794 041__ $$aEnglish
001024794 1001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b0$$eCorresponding author$$ufzj
001024794 1112_ $$a37th Topical meeting of the International Society of Electrochemistry$$cStresa$$d2024-06-09 - 2024-06-12$$wItaly
001024794 245__ $$aManufacturing of Solid-State Batteries meets Thermodynamics – Uncovering of novel phases, and their impact on future experimental and theoretical work
001024794 260__ $$c2024
001024794 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1712665498_18042
001024794 3367_ $$033$$2EndNote$$aConference Paper
001024794 3367_ $$2BibTeX$$aINPROCEEDINGS
001024794 3367_ $$2DRIVER$$aconferenceObject
001024794 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001024794 3367_ $$2ORCID$$aOTHER
001024794 520__ $$aSolid-state batteries benefit from their stability against metal anodes like elementary lithium and their enhanced safety due to their more stable ceramic or glass-like electrolytes compared to the state-of-the-art Lithium ion technology. The feasibility of successful processing of such materials with high-capacity cathode material is crucial for innovation. This presentation comprises a systematic and comprehensive study of a combination of the cathode active materials LiNi1/3Mn1/3Co1/3O2 (NMC111), LiNi0.6Mn0.2Co0.2O2 (NMC622), LiNi0.8Mn0.1Co0.1O2 (NMC811), and LiNi0.8Co0.15Al0.05O2 (NCA) with a garnet solid electrolyte Li6.45La3Zr1.6Ta0.4Al0.05O12 as an example, highlighting the challenges of manufacturing as well as the thermodynamic stability limits. In comparison to prior studies on such approaches, additional phases were detected, which had not been taken into consideration in previously published work. Essentially, these phases were identified for the first time by combining multiple analysis techniques like X-ray diffraction, Raman spectroscopy and microstructural and elemental analysis. As an outlook, strategies how to circumvent secondary phase formation thus resulting in improved functional battery cells, as well as the impact of novel phases on computational simulation including artificial intelligence (AI) approaches are discussed.
001024794 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024794 536__ $$0G:(DE-HGF)POF4-1222$$a1222 - Components and Cells (POF4-122)$$cPOF4-122$$fPOF IV$$x1
001024794 7001_ $$0P:(DE-Juel1)172750$$aRoitzheim, Christoph$$b1
001024794 7001_ $$0P:(DE-Juel1)159368$$aSohn, Yoo Jung$$b2$$ufzj
001024794 7001_ $$0P:(DE-Juel1)129662$$aSebold, Doris$$b3$$ufzj
001024794 7001_ $$0P:(DE-Juel1)178008$$aScheld, Walter Sebastian$$b4$$ufzj
001024794 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b5$$ufzj
001024794 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b6$$ufzj
001024794 7001_ $$0P:(DE-Juel1)171780$$aFattakhova-Rohlfing, Dina$$b7$$ufzj
001024794 909CO $$ooai:juser.fz-juelich.de:1024794$$pVDB
001024794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich$$b0$$kFZJ
001024794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159368$$aForschungszentrum Jülich$$b2$$kFZJ
001024794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129662$$aForschungszentrum Jülich$$b3$$kFZJ
001024794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178008$$aForschungszentrum Jülich$$b4$$kFZJ
001024794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145623$$aForschungszentrum Jülich$$b5$$kFZJ
001024794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b6$$kFZJ
001024794 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171780$$aForschungszentrum Jülich$$b7$$kFZJ
001024794 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024794 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1222$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x1
001024794 9141_ $$y2024
001024794 920__ $$lyes
001024794 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001024794 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
001024794 980__ $$aabstract
001024794 980__ $$aVDB
001024794 980__ $$aI:(DE-Juel1)IEK-1-20101013
001024794 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024794 980__ $$aUNRESTRICTED
001024794 981__ $$aI:(DE-Juel1)IMD-4-20141217
001024794 981__ $$aI:(DE-Juel1)IMD-2-20101013