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fAgrosphere (IBG-3), Institute of Bio- and Geosciences, Forschungszentrum Jülich14
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Abstract16

Climate change is amplifying the duration, frequency, and intensity of droughts,

harming global ecosystems. During droughts, plants can close their stomata

to save water, at the expense of a reduced carboxylation rate. When in a

carboxylation-limited regime, plants benet from an increase in water avail-

ability, as it increases their photosynthetic rate. The sun-induced chloro-

phyll uorescence (SIF) signal, measurable from satellites, is mechanistically

linked to this rate. Like canopy photosynthesis, SIF carries an imprint from

the available irradiation (PAR) as well as on the canopy structure and on the

eciency of the photosynthesis at the photosystem level. Normalizing the

global TROPOMI SIF observations with TROPOMI reectance and MODIS

Normalised Dierence Vegetation Index (NDVI) data, we extracted the u-

orescence quantum yield (ϕF ), which lab-scale experiments have found to
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be linked to the photosynthetic electron transport. Plant physiologists have

long proved the photosynthetic electron transport to be sensitive to plant

water status conditions. Here, the plant water status is controlled by the

soil moisture (SM) and the vapour pressure decit (VPD). Combining data

from the TROPOMI, AIRS and SMAP satellite sensors, this study describes

how SM and VPD control the ϕF at the global scale. We identify a VPD

range (VPD<1.5 kPa) in which the ϕF is mainly controlled by VPD, and

another (VPD>1.5 kPa) in which the ϕF is co-regulated by SM and VPD.

The precise values of this range, as well as the magnitude of ϕF values are

modulated by the plant isohydricity. To gain a deeper understanding of the

link between ϕF and photosynthetic eciency at large scale, we used the link

between ϕF and data on the canopy conductance (Gs), which were calculated

using remote sensing data-driven models. A comparison found that the ϕF -

Gs relationship at large scale is in line with the ϕF -Gs relationship described

in plant-level studies.

1. Introduction17

Water is an essential element for plants to grow and for ecosystems to18

function. Changes in the ecosystem water status jeopardize the ecosystem19

health, reduce crop yields and may lead to forest res, among other impacts20

(Gupta et al., 2020; O et al., 2020; Venturas et al., 2021). Due to climate21

change, droughts are an increasingly relevant problem in the coming decades22

(Balting et al., 2021). From a plant physiological perspective, a drought is23

a shortage of water availability, combined with high atmospheric water de-24

mand (Orimoloye, 2022). This induces a series of possible reactions, which25
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include stomatal closure, decreased photosynthetic rate, leaf water loss, cavi-26

tation, chlorophyll degradation and accelerated senescence (West et al., 2019;27

Jonard et al., 2011). Over the last 50 years, remote sensing has proven its28

value for large-scale drought stress monitoring. First-generation Earth Ob-29

servation (EO) satellites have used the canopy greenness as an indicator of30

an ecosystem’s stress status (West et al., 2018), as damaged plants tend to31

shed or brown their leaves. While very intuitive, greenness only provides32

limited information on plant physiology. Data streams generated by new-33

generation EO satellites are focused on signals that are more closely linked34

to plant health, establishing a link between the elds of plant physiology and35

remote sensing (Jonard et al., 2020). A key variable in this school of thought36

is the sun-induced chlorophyll uorescence (SIF) signal, which originates in37

the heart of the photosynthetic apparatus (Porcar-Castell et al., 2021).38

Photosynthesis is the process by which a plant harvests light energy and uses39

it to incorporate a CO2 molecule into a carbohydrate. This overall reaction40

can be split into two main processes: the photosynthetic electron transport,41

responsible for the light harvesting, and the Calvin cycle, responsible for42

the CO2 assimilation (Farquhar et al., 1980). The chlorophyll molecules are43

embedded in proteins forming photosystems (PS). The activity of photosys-44

tem II (PSII) determines the rate of light absorption, while the rate of the45

Calvin cycle is determined by the carboxylation rate. On the one hand, the46

overall photosynthetic rate is limited by its light reactions, thus by its en-47

ergy availability. On the other hand, water availability conditions control the48

carboxylation regime, as plants tend to close their stomata reducing transpi-49

ration in an attempt to save water at the expense of a reduced CO2 uptake50
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(Muhammad et al., 2021; Jonard et al., 2022).51

The mechanistic link between SIF and photosynthesis nds its origins at52

the level of PSII. The PSII is responsible for the electron harvesting from53

a water molecule and for sending it to the electron transport chain. For a54

PSII to provide this energy, its outermost electron pair jumps to a higher55

energy level, forming an excited PSII (PSII*). The energy trapped by this56

photosystem is split over three pathways. The rst pathway is the photo-57

chemical electron chain, fuelling the Calvin cycle. The second pathway is a58

container category of processes that dissipate the excess trapped energy as59

heat. These are collectively known as non-photochemical quenching (NPQ).60

As a nal pathway, the trapped photon can be re-emitted as chlorophyll u-61

orescence (Porcar-Castell et al., 2014). The fraction of photons going down62

each pathway is referred to as the photochemical quantum yield (ϕp), the63

non-photochemical quantum yield (ϕN ), and the uorescence quantum yield64

(ϕF ), respectively. The ϕF emission typically varies between 1 and 3% of65

the absorbed light radiation (Jonard et al., 2020). A lowered carboxylation66

decreases the energy demand by the photosynthetic electron transport chain,67

decreasing ϕP , increasing ϕN , which leads to a decrease in the life-time of the68

excited state of photosystem II (PSII*), decreasing ϕF (van der Tol et al.,69

2014). Consequently, it was possible to link ϕF to stomatal conductance70

(Gs) using leaf-level measurements (Flexas et al., 2002). Canopy-scale SIF71

is the aggregate of the uorescence emission of all photosystems, the rate72

of which is determined by ϕF . Therefore, ϕF can be conceptualized as the73

physiological component of SIF.74

SIF is dwarfed by the reected and scattered sunlight, restricting the75
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SIF retrieval to the Fraunhofer lines and Telluric bands. These are (sub-76

)nanometre scale spectral bands in which solar irradiation is reduced. In case77

of the Fraunhofer lines, this reduction is caused by light absorption by -mostly78

metallic- elements in the Sun’s outer layers. In Telluric lines, the reduction is79

caused by atmospheric gasses. The main Telluric lines are linked to absorp-80

tion of O2 and of H2O. Thanks to the reduction in solar irradiation in the81

Fraunhofer lines, the relative contribution of SIF to the measured radiance82

is signicantly higher compared to radiances measured outside these bands.83

Given the narrow spectral range of the Fraunhofer lines, a nanometre-scale84

spectral resolution is imperative for SIF measurements. The FLuorescence85

EXplorer (FLEX) satellite, scheduled for launch in 2025, will be carrying86

two terrspectrometers tailored to SIF retrievals (Drusch et al., 2017). Cur-87

rently, satellites designed for monitoring atmospheric trace gasses provide88

global SIF data products. One of these products comes from the TROPO-89

spheric Monitoring Instrument (TROPOMI), installed on Sentinel-5P, that90

provides daily global coverage. Guanter et al. (2021) propose two dierent91

TROPOMI-based SIF products that estimate the SIF emission at 740 nm.92

The product dier in the tting window through which SIF is retrieved; the93

735 product makes use of a tting window between 735 and 758 nm, while94

the 743 product uses a tting window between 743 and 758 nm. The former95

makes use of a wider range of Fraunhofer lines than the latter, but its retrieval96

is impacted by the atmospheric water content. The latter only uses solar ab-97

sorption lines, making the retrievals independent from the atmospheric water98

content.99

Given its use in the eld of plant physiology, there is an increasing inter-100
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est in nding remote sensing based estimates of ϕF . Tower- or drone-based101

remote sensing studies have retrieved ϕF at the canopy scale and managed102

to observe a reaction in ϕF in function of the water availability (De Cannière103

et al., 2021; De Canniere et al., 2022; Wang et al., 2023; Xu et al., 2021). Sim-104

ilarly, Kimm et al. (2021a) pointed out the importance of the water demand,105

quantied by the vapour pressure decit (VPD). Both high VPD and low106

SM lead to a reduction in ϕF . Helm et al. (2020) links the drought-induced107

decrease in ϕF to a decrease in Gs. At the satellite scale, fewer studies use108

ϕF in favour of SIF, that has shown to be reactive to drought conditions.109

Sun et al. (2015) linked dierent drought categories from the US drought110

monitor (Svadoba et al., 2002) to the ecosystem-scale SIF.111

However, the SIF drought reaction is determined by a simultaneous canopy112

structural and physiological change (Dechant et al., 2020), the sum of which113

caused a SIF decrease that goes together with a GPP decrease (He et al.,114

2020). The combination of the structural and physiological components115

makes SIF a more performant drought diagnostic compared to greenness116

indices (Qiu et al., 2022). Recently, regional satellite-based studies have iso-117

lated physiological component and observed its reactivity to droughts (Gu118

et al., 2023; Zhang et al., 2023). The combination of the structural and119

physiological component makes SIF a more performant drought diagnostic120

compared to greenness indices (Qiu et al., 2022). The physiological com-121

ponent of SIF boils down to the uorescence yield ϕF , a variable that is122

unaected by canopy greennes or structure. Dechant et al. (2022) propose123

an ecient method for retrieving ϕF from satellite-based sensors, by normal-124

izing the SIF. A global, satellite-based dataset of ϕF opens the door to an125
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improved interpretation of SIF data through an ecophysiological lens.126

Two environmental variables that stand out as constraining factors on127

the ecosystem-scale photosynthesis and SIF emission are water availability,128

typically quantied with the SM and the atmospheric water demand, quan-129

tied with the VPD (Fu et al., 2022; Lu et al., 2022). In order to interpret130

the control of VPD and SM on photosynthesis, and therefore on ϕF and SIF,131

it is important to consider the stomatal behaviour. The connection between132

Gs, ϕF and photosynthesis is well-established at the plant level (Flexas et al.,133

2002; van der Tol et al., 2014). The specic nature of this connection at the134

ecosystem level diers on a series of ecosystem properties, of which the isohy-135

dricity a key trait. Isohydricity is an ecophysiological trait that describes the136

sensitivity of the stomata to increasing drought conditions. A plant is more137

isohydric if its stomata are sensitive to drought (i.e., they tend to close in138

response to drought), and more anisohydric if the stomata are less sensitive139

(i.e., they tend to remain open despite of drought conditions). More isohy-140

dric plants save up water during drought periods at the cost of a lower car-141

boxylation rate, while more anisohydric plants maintain high photosynthetic142

rates during drought periods, putting themselves under risk of hydraulic fail-143

ure but potentially outperforming their more isohydric neighbours (Novick144

et al., 2019). Considering the environmental variables soil moisture (SM)145

and vapour pressure decit (VPD), as well as the physiological variables Gs146

and ϕF at the ecosystem scale, we hypothesize that: (i) VPD and SM are147

important controlling factors on ϕF , (ii) as anisohydric plants are known to148

have a less strict stomatal response to changes in environmental factors, an149

eect of the anisohydricity is expected on the response of ϕF to VPD and150
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SM, (iii) the relationship between canopy conductance (Gs) and ϕF holds151

in a way it holds at the scale of the individual plant (e.g., Flexas et al.,152

2002). The paper is structured as follows. Section 2 explains the datasets153

used and the methodology, including the way we compute ϕF , the analysis of154

SM and VPD as controlling factors, and the modelling of stomatal conduc-155

tance. Section 3 shows the results in four steps: (i) the spatial patterns of156

ϕF ; (ii) the time-correlation between ϕF and greenness; (iii) the controls of157

SM and VPD on ϕF ; and (iv) the comparison of the SM-VPD-ϕF space with158

the SM-VPD-Gs space. Sections 4 and 5 are the discussion and conclusions.159

2. Materials and Methods160

2.1. Data161

2.1.1. L-band passive microwave soil moisture from SMAP162

Passive microwave remote sensing at L-band (1.4 GHz) provides an excel-163

lent tool for monitoring soil moisture regularly and globally. Advantages of164

this technique include: (i) compared to higher frequencies, the longer wave-165

lengths maximize the soil depth to which the signal is sensitive; (ii) clouds are166

transparent, allowing for all-weather retrievals and (iii) compared to active167

microwave techniques and to shorter wavelengths, L-band passive microwave168

emission is less aected by the canopy structure. The coarse spatial resolu-169

tion of passive microwave SM retrievals is particularly suited for regional to170

global scale research. This study makes use of L-band SM data from the Soil171

Moisture Active Passive (SMAP) satellite (Entekhabi et al., 2010) retrieved172

using the Multi-Temporal Dual-Channel Algorithm (MT-DCA; Konings and173

Gentine, 2017; Feldman et al., 2021). The data come at a 3-day temporal174
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resolution and 9 km spatial gridding.175

2.1.2. Atmospheric data from AIRS176

The evaporative water demand is monitored with the Atmospheric In-177

fraRed Sounder (AIRS) instrument, on NASA’s Aqua satellite, launched in178

2002 (Aumann et al., 2003). This instrument measures the infrared radiance179

at 2378 spectral samples, located in three spectral regions of the thermal180

infrared. Along these bands, atmospheric trace gasses, like CO2 and H2O,181

have dierent absorption spectra. Using this information, AIRS retrieves182

a vertical transect of temperatures and atmospheric trace gasses concentra-183

tions at the global scale with a daily resolution (Aumann et al., 2003). This184

allows computing daily data of VPD (Eq. 1-2) based on the saturation water185

vapour pressure (esat; kPa), air temperature (Tair;
oC) and the air relative186

humidity (RH; %).187

esat = 0.61094 · e
17.625·Tair
Tair+243.04 (1)

VPD =esat ·



1−
RH

100



(2)

Both Sentinel-5P (used to retrieve SIF; see Section 2.1.3) and Aqua satel-188

lites have their overpass times at 13.30, minimizing the diurnal shift between189

the VPD and SIF measurements. AIRS provides daily atmospheric data at190

1o spatial resolution. Using linear interpolation, the 1-degree dataset is re-191

gridded to a 9 km Equal Area Scalable Earth version 2 (EASE-2) grid. When192

interpreting VPD at a large scale, it is important to realize that VPD, air193

temperature and solar irradiation are tightly interconnected and that a VPD194
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eect is hard to distinguish from an irradiation or a temperature eect. We195

try to limit the eects of the lower resolution VPD by binning ϕF relative196

to SM and VPD conditions (see section 2.2.2). This approach enables us to197

use datasets of dierent resolutions, although higher resolution VPD would198

increase the number of unique SM and VPD pairs for binning. We think that199

AIRS VPD suciently covers large scale atmospheric dryness, and we have200

high enough sampling to isolate the VPD control on ϕF .201

2.1.3. SIF and NIR data from TROPOMI202

The SIF data were taken from the ‘TROPOSIF’ product (Guanter et al.,203

2021), that retrieves SIF emission at its 740 nm emission peak (in mW m−2
204

sr−1 nm−1) from the TROPOMI sensor onboard the Sentinel-5P satellite.205

The product represents instantaneous SIF emission at the moment of the206

measurement. The retrieval uses the spectral tting window between 743207

and 758 nm and relies purely on solar Fraunhofer lines, reducing its sensi-208

tivity to atmospheric eects compared to retrieval methods that include the209

atmospheric absorption bands. For the SIF retrieval, the observed signal over210

the dierent bands is split into a smooth (true) reectance signal and a uo-211

rescence signal. The latter makes up for the dierence between the true and212

apparent reectance (i.e., the reectance as observed by the satellite). The213

retrieval assumes cloud-free conditions. The same TROPOSIF product also214

provided the broadband top of atmophere (TOA) NIR radiances (NIRRAD;215

in mW m−2 sr−1 nm−1). TROPOMI has a 16-day revisit time and a swath216

of 2600 km, allowing it to combine nadir and o-nadir measurements. This217

combination allows a daily global coverage. The spatial resolution of the218

data product goes up to 3.5 km x 5.5 km at nadir, while going down to 14.5219
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x 5.5 km o-nadir. Each data point in the TROPOSIF product contains a220

quality value, with penalties for high Solar Zenith Angle (SZA), a low aver-221

age TOA NIRRAD, an extreme value for SIF, or a high Viewing Zenith Angle222

(VZA). As a nal quality control, the χ2-value between the calculated and223

observed spectra is calculated, allowing to identify the retrievals that have224

been hampered by clouds. The calculated spectrum is the sum of the smooth225

(true) reectance and the uorescence. Following the recommendations laid226

out in Guanter et al. (2021), this study only selected TROPOSIF SIF and227

NIRRAD data that did not take any penal point from the beforementioned228

categories. In the TROPOSIF dataset, SIF values can be negative. These229

values are the result of the lack of ground-based calibrations, as well as of230

a series of noise introduced by the atmosphere. Negative SIF values were231

mainly reported over areas with only sparse vegetation. While negative SIF232

values are not physical, they do represent the regions with the lowest SIF233

emissions and deleting the negative SIF values would introduce a negative234

bias in the system. Therefore, the negative SIF values were considered in our235

analyses. The negative data comprised of 23% of the data.236

2.1.4. NDVI data from MODIS237

Information on the vegetation development comes from NDVI data, which238

were obtained from the MOD13C1 product (Didan, 2015). This product is239

derived from the MODerate Imaging Spectroradiometer (MODIS) on board240

of the Terra satellite. This product bins two 8-day composite surface re-241

ectance granules into a 16-day period and is set out on a 0.050 grid. The242

product has a staunch quality control, removing any cloud-aected data. In243

a second instance, the data were spatially aggregated and temporally inter-244
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polated to form a global 9 km product at a daily resolution. This approach245

allows to get a smooth signal on the vegetation development that minimizes246

the cloud eects, that profoundly aect the NDVI retrieval. Table 1 gives247

an overview of all the used remote sensing products, as well as on their248

resolutions.249
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2.1.5. Isolating the physiological component from SIF to create a global ϕF250

dataset251

To convert satellite-based SIF to ecosystem-scale ϕF values, three multi-252

plicative factors need to be considered (Jonard et al., 2020) (Eq. 3).253

SIF = PAR·fPAR · ϕF · fesc (3)

The rst term is the photosynthetically active radiation (PAR), that fu-254

els the photosynthesis. The second factor is the fraction of this PAR that255

the leaves absorb (fPAR). Finally, there is the escape probability (f
esc
), the256

probability of a re-emitted photon by PSII to reach the sensor. The non-257

physiological part of SIF, being the fPAR, PAR and f
esc

can be grouped in258

the NIRvP variable (Dechant et al., 2022) as in Eq. 4.259

NIRvP ≈ PAR·fPAR·fesc (4)

While SIF has very strict spectral retrieval requirements, NIRvP can be260

measured by using only the Normalized Dierence Vegetation Index (NDVI)261

and the reected radiance in the TOA part of the near-infrared (NIRrad), as262

shown in Eq. 5.263

NIRvP = NDVI·NIRrad (5)

Finally, normalizing SIF by NIRvP provides an estimate for ϕF (Eq. 6),264

the uorescence yield (Zeng et al., 2022):265

ϕF ≈

SIF

NIRvP
(6)

15



As an additional quality control on the TROPOSIF product, data points266

of ϕF with a NIRvP < 25 mWm−2sr−1nm−1 were not considered, as they267

represent too small vegetation or too low solar radiations.268

2.2. Evaluating the eect of environmental factors on ϕF269

2.2.1. Grasping the spatial and temporal variation of ϕF270

The analysis was based on data from the years 2019 and 2020. Three271

steps were made to explore the behaviour of ϕF along the spatial and tempo-272

ral dimensions. First, a pixel-averaged map of global yearly ϕF was made for273

the year 2019. Second, to verify that the ϕF indeed represents eects that274

are unrelated to canopy-greenness, the pixel-based Pearson’s correlation co-275

ecient betweenϕF and NDVI was calculated for the year 2019. Third, to276

visualize the eect of a drought stress on large-scale ϕF , a ϕF map of West-277

ern Europe was made before and during the 2019 European Summer Drought278

(Blauhut et al., 2022).279

2.2.2. Evaluating the eect of SM and VPD in a phase space280

As a next step, we analyse the eect of the environmental variables SM281

and VPD on ϕF by plotting each observation of ϕF values in function of282

its corresponding VPD and SM observations in a phase space. While plant283

drought stress is a complex and multi-dimensional problem, SM and VPD284

represent respectively the supply and demand of water. Each point in the285

phase space considers a specic set of environmental conditions, i.e., a VPD-286

SM combination, and shows the average ϕF value for these conditions. The287

observed ϕF values over the years 2019 and 2020 were binned based on both288

their SM (55 bins, between 0 and 0.55 m3/m3, bin width 0.01 m3/m3) and289
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VPD (40 bins, between 1 and 5 kPa, bin width 0.1 kPa). To ensure statistical290

representativeness, we took global data over two years, and SM-VPD bins291

that contained fewer than 1200 measurements were removed. Within the292

phase space, contour lines connect points of equal ϕF . The shape of these293

lines qualitatively reveals the controlling factor on ϕF .294

The analysis of phase space plots is done in two steps. In a rst instance, a295

global average of the relationship between SM-VPD and ϕF is made through296

a phase space. The global analysis has the advantage of containing a maximal297

number of observations, but it neglects spatial variations in the response of298

ϕF to SM and VPD. In a second instance, the vegetation are considered, by299

plotting dierent phase spaces for each dierent land cover and isohydricity300

categories.301

2.2.3. Data stratication of the global ϕF dataset with land cover, isohydricity302

Mechanistically linked to photosynthesis, plant-scale ϕF is sensitive to303

plant isohydricity (Attia et al., 2015; Cocozza et al., 2016), although the pre-304

cise relationship at ecosystem scale is unclear. The global ϕF dataset was305

stratied based on the degree of anisohydricity of each pixel (Table 2) using306

a global database of isohydricity from (Appendix A.1; Konings and Gentine,307

2017). This dataset quanties an ecosystem isohydricity based on the diur-308

nal variation on satellite AMSR-E observations of X-band Vegetation Optical309

Depth (VOD), a proxy for the water potential in the leaves. This variation310

is quantied as the slope (σ) of the linear regression between daytime and311

night-time VOD. Pixels showing little σ values (σ ∼ 0) were considered as312

more isohydric, meaning they have a strict stomatal control, therefore low313

diurnal VOD variation. Pixels with a σ values close to 1 were instead consid-314
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Table 2: Isohydricity classes, based on the slope between midday and midnight vegetation

optical depth σ (Konings and Gentine, 2017).

Strictly

Isohy-

dric

Isohydric Rather

Isohy-

dric

Rather

Aniso-

hydric

Aniso-

hydric

Strictly

Aniso-

hydric

0—0.2 0.2—0.4 0.4—0.6 0.6—0.8 0.8—1 1—1.2

ered more anisohydric. Those pixels typically have higher daily transpiration315

rates, and therefore a larger dierence between daytime and nighttime VOD316

(Konings and Gentine, 2017). While some ecosystems are reported to have a317

seasonality in their degree of anisohydricity, driven by leaf phenology (Gong318

et al., 2022), or due to species turnover (Wu et al., 2021). Studying time-319

variable eects of isohydricity is beyond the scope of this study. Isohydricity320

is thefore considered as a time-constant value. To assess the eect of isohy-321

dricity and anisohydricity on the ϕF under dierent SM and VPD conditions,322

we split ecosystem-scale isohydricity into 6 discrete classes.323

In addition to the isohydricity eect, the eects of land management were324

studied. To do so, croplands were treated distinctly from other vegetation325

types as they typically show a clear anisohydric behaviour and farming prac-326

tices allow agricultural crops to grow optimally, with high photosynthetic327

rates. Such management practices are not present in natural ecosystems.328

The vegetation type information come from the International Geosphere–329

Biosphere Programme (Friedl et al., 2010) land cover classication informa-330

tion. Both the land cover and isohydricity analyses were carried out over the331

global dataset.332
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2.3. Modelling Gs at the continental scale333

SM and VPD aect ϕF through partially driving stomatal closure (Jonard334

et al., 2020), as closed stomata limit the plant’s carboxylation rate. There-335

fore ϕF and Gs should be controlled by SM and VPD in similar ways. We336

test this by comparing ϕF observations to Gs model estimates. We do not337

attempt to validate ϕF using Gs but aim to explore whether both variables338

are controlled by SM and VPD in similar ways and whether a previously ob-339

served relationship between ϕF and Gs is reproducible using continental scale340

ϕF and model estimates (Flexas et al., 2002). Similar comparisons have been341

done by Zhang et al. 2021, Fu et al. 2022 and Liu et al. 2020, although on342

smaller scales. Work by Zhang et al. (2021) relies on Gs calculated using the343

Penman Monteith equation, which requires substantial local measurements344

to parameterize the model properly. The Gs data we use is based on a sim-345

ple soil-plant hydraulic model, originally designed by Carminati and Javaux346

(2020) and expanded by Wankmüller and Carminati (2021). We run the347

model with remote sensing observations of SM and VPD (same as in Table348

1) as inputs to predict Gs for Africa. Furthermore, Soil hydraulic properties349

are calculated using empirical formulations by Rawls and Brakensiek (1985)350

and global soil maps (Hengl, 2018a,b) and root length is adjusted as a fraction351

of MODIS leaf area index (LAI). Limiting the scope of the analysis to the352

African continent reduces the computation time to a manageable amount,353

while still analysing a large diversity of dierent biomes and climates. Due354

to the coarse input datasets and the computationally expensive nature of the355

model, we estimate Gs at 36 km resolution.356

The plant soil hydraulic model we use has been desrcibed in Carminati and357
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Javaux (2020) and Wankmüller et al. and includes radial water transport358

from soil to root, which is often not resolved in larger ecosystem models.359

The model operates under the steady state assumption, i.e., all water uxes360

equalize between soil and plant compartments. Water ow between soil and361

plant follows from the water potential dierence between compartments and362

the compartment conductance. The decrease of soil conductance as a result363

of root water uptake is nonlinear and can quickly limit the conductance of the364

whole soil plant system in dry conditions, which might exert strong control365

on stomatal response (Carminati and Javaux, 2020). The model setup does366

not prescribe species specic traits or levels of isohydricity. The relationship367

of Gs to SM and VPD is resulting from the models’ soil and plant hydraulics368

and the local SM and VPD time series. Our goal is to provide a simple com-369

parison between SM and VPD control on ϕF and plant hydraulics-based Gs.370

Abscisic acid (ABA) is a plant hormone relevant for many plant processes,371

like growth, and a plays an important role in signalling water stress. It has372

been observed that increasing ABA levels lead to stomatal closure, therefore373

reducing plant water loss (Bauer et al., 2013). Wankmüller and Carminati374

(2021) include the eect of ABA on stomatal/canopy conductance using fol-375

lowing simple model. The relative level of ABA (-) follows from a sink-source376

equation (Eq. 7):377

|ABA| ∝
−Ψleaf + ϵΨ

A+ ϵA
(7)

where the source term in the numerator depends on the leaf water poten-378

tial Ψleaf (MPa) and a constant minimum production rate ϵΨ (MPa). The379

sink term in the denominator depends on an assimilation rate A and a con-380
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stant minimum degradation rate ϵA (µmol m−2s−1) . ψleaf results from the381

solution of the plant hydraulics model for a given transpiration rate Eleaf.382

This description of ABA dynamics is extremely simplied, not including a va-383

riety of other factors and processes, like the transport of ABA in the plant or384

the dependence of ABA production and degradation on temperature, among385

others. The assimilation rate A µmol m−2s−1 is modelled as a function of386

stomatal conductance and a saturation curve (Eq. 8:)387

A (GS)=
GS

1.6
Amax

GS

1.6
+KM

(8)

where Amax (µmol m−2s−1) is the maximum assimilation rate andKM (µmol388

m−2s−1) is the Michaelis-Menten constant. GS (µmol m−2s−1) linked to the389

transpiration rate using the following simple model (Medlyn et al., 2011):390

GS=TAleaf

Patm

VPD
(9)

with transpiration rate Eleaf, Patm the atmospheric pressure and VPD391

the vapour pressure decit. Equation 9 displays the dependence of Gs, and392

therefore of |ABA| on plant hydraulics (through Eleaf) and VPD. Further-393

more, Ψleaf goes into equation (7) which inuences |ABA| and subsequently394

Gs as well. The whole model containing plant hydraulics and ABA dynamics395

is iteratively solved by minimizing |ABA|, which results in an estimation of396

Gs for every timestep with SM and VPD observation. We refer to Carminati397

and Javaux (2020) and Wankmüller and Carminati (2021) for a more detailed398

description of the model framework and provide our exact parameterization399

in the supplement. The model framework does not include any functional400

dependence of Gs on light availability or temperature, which should limit the401
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ability of the model to capture Gs dynamics in areas where they are most402

important and water limitation is not relevant (e.g rainforests).403

3. Results404

3.1. Global patterns of ϕF405

Figure 1 shows the global average ϕF for 2019 at 9 km resolution. Regions406

that typically show a clear moisture gradient, such as the Sahel region or407

Northern Australia, tend to show a gradient in ϕF . Western Europe, India,408

Brazil, Tropical Africa and Southeast Asia show high values of ϕF . Smaller-409

scale patterns however, are harder to spot.410
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In addition to the spatial patterns, the ϕF also shows reactivity to distur-411

bances, that typically reduce the ϕF . This concept is illustrated by Figure 2,412

which shows the ϕF over Western Europe during a regular 2019 spring (Fig-413

ure 2a) and the First European heatwave 2019 (Figure 2b) in Western Europe414

(Blauhut et al., 2022). The map shows a clear decrease in ϕF in France and415

Southern Germany (Figure 2c). This behaviour was not repeated in 2021, a416

year in which heatwaves and droughts were absent in Europe.417

Figure 3 shows the pixel-based Pearson’s correlation coecient between418

NDVI and ϕF (ρϕF -NDVI) for 2019. Spatially, regions with a high ϕF -NDVI419

correlation tend to concentrate in regions that have either a semi-arid climate,420

such as the Sahel, or that are situated at high latitudes, such as Siberia or421

Canada. The histogram of the correlation coecient shows a clear peak422

around 0, indicating that the ϕF is unrelated to the NDVI for most pixels.423

Signicant (p-value < 0.05) NDVI-ϕF correlations grouped around the sahel424

and the Taiga regions in Canada and Siberia (Figure Appendix A.4).425
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Figure 2: (a) Spatial overview of the average ϕF for June 1st-June 11th (b) Spatial overview

of the average ϕF for June 25th-July 5th, the 2019 European heatwave; (c) dierence in

ϕF between Figures (a) and (b). (d), (e) and (f) show the same periods of the year, for

the year 2021, a wet year.
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3.2. Observed control of SM and VPD on ϕF426

Figure 4 shows the global ϕF as a function of the SM and VPD. Consid-427

ering almost all global terrestrial ecosystems, gure 4 shows a general image428

on the behaviour of ϕF over the globe. The highest ϕF values are found in429

the VPD range between 2 and 3 kPa. Some SM-VPD combinations were430

more frequent than others, which is represented by Figure 4b. For the region431

with VPD < 1.8 kPa, the horizontal contour lines indicate that VPD is the432

only driving factor for the ϕF . For the region with VPD > 1.8 kPa, the more433

curved and diagonal contour lines indicate a co-regulation of ϕF by SM and434

VPD, especially for VPD > 2.5 kPa. Figure 4c shows in another way that435

VPD is the main factor driving ϕF for the region VPD < 1.8 kPa. For higher436

VPD, a decrease in soil moisture leads to a decrease in ϕF . This is most for437

the region SM > 0.25 m3/m3 , which is also visible in the right part of Figure438

4a. Figure 4b shows points with a higher SM tend to be more frequent in the439

lower VPD part and vice versa. Therefore, high SM-high VPD points were440

excluded from the analysis. Figure 4c shows clearly the control of VPD on441

ϕF at lower VPD values and the role that SM plays in this control at higher442

VPD.443
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Figure 4: (a) phase space showing the average ϕF for each SM-VPD combination that

emerged from a global analysis during the years 2019 and 2020. The red lines denote

contour lines of regions of equal ϕF values. (b) Number of samples for each SM-VPD

combination. The green line in Figure b shows the threshold of 1200 combinations; and

fewer combinations (i.e., right of the line) are removed from the analysis. (c) represents

the same data as (a), but the axes are swapped.28



3.3. Isohydricity modulates control of SM and VPD on ϕF444

Figure 5 shows the ϕF values in function of both the SM and VPD con-445

ditions along the isohydricity strata. All the subplots replicate the global446

behaviour, with maximal ϕF values found in the region of VPD between 2447

and 3 kPa. The ϕF behaved similarly in the classes isohydric, rather isohydric448

and rather anisohydric. In contrast, in the two most anisohydric categories449

(isohydricity < 0.2), the ϕF values were notably higher than in the more iso-450

hydric classes. In addition, there was a clear local maximum for SM around451

0.17 and VPD around 2.2 kPa, for the rather anisohydric and anisohydric452

classes. This local maximum was not observed for the more isohydric classes.453

In the most anisohydric class, the ϕF was almost completely decoupled from454

the water availability, with a decrease in ϕF only setting in when the SM455

values approach to 0.456
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Figure 5: Phase spaces of the ϕF values along the SM-VPD space for six dierent isohy-

dricity classes.

Figure 6 shows the eect of increasing VPD on the ϕF under ranges of457

averaged soil moisture conditions for the dierent isohydricity classes. The458

gure shows a very clear dierence in the ϕF emission for the VPD range459

between 1 and 3 kPa. For VPD > 2.5 kPa, the ϕF tends to decrease in460

response to a higher VPD. Consistent with Figure 5, there is an increasing461
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trend of ϕF with increasing isohydricity, and very anisohydric regions show462

the highest ϕF values, especially for VPD above 1 kPa. It is worth noting463

that the more isohydric ecosystems show a higher ϕF at VPD < 0.8 kPa.464

For the lower SM classes, the isohydricity eect on ϕF is more notable, as465

the two more anisohydric lines clearly show the highest ϕF value in the plot466

with the lowest soil moisture in the region with VPD > 0.8 kPa. In contrast,467

the plot with SM > 0.45 m3/m3 shows that the isohydricity almost plays no468

eect on ϕF , except for the most anisohydric category.469
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Figure 6: ϕF -VPD relationship at dierent soil moisture condition ranges and isohydricity

classes. Values for VPD>3 kPa were not shown, as there were too few observations in this

class.

Croplands tend to behave dierently in their SM-VPD space compared to470

other vegetation (Figure 7). As a main dierence, the croplands show higher471

ϕF values compared to the non-croplands, while the shape of the contour472

lines does not change signicantly. It should be noted that the cropland473
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vegetation contains a higher proportion of more anisohydric pixels (mean of474

0.4 for non-croplands, mean of 0.2 for croplands, Figure Appendix A.2).475

Figure 7: Phase space of ϕF along the SM-VPD space for croplands and non-croplands

(i.e., other vegetation types that are not croplands).

3.4. Comparison of ϕF observations and modelled Gs at the continental scale476

Figure 8 shows the phase space and contour plot of ϕF and Gs. The main477

similarity between the ϕF and Gs phase space is that they both decrease478

with decreasing SM conditions, but the ϕF decreases are less steep compared479

to the Gs decrease. Overall, both show a similar VPD-dominated regime at480

high SM and a co-regulated regime at low SM. For SM < 0.15 m3/m3, the481

Gs lines are close to vertical along the entire VPD range. This behaviour is482

not presented in the ϕF data. ϕF at low SM might pick up adapted dryland483

vegetation, which is not represented in the trait-less model. For the low VPD484

range, modelled Gs does not increase with VPD, which is likely due to the485

limitation that Gs is only driven by water limitation (i.e., SM and VPD)486

but is not an explicit function of temperature or light. Future adaptation487

to the Gs model could include these eects and might make the model more488
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realistic.489

Figure 8: ϕF (left) and Gs (right) values over the African continent during 2019-2020 in

the SM-VPD phase space. The ϕF dataset was re-gridded to 36 km before being put in

the phase space. The minimal threshold for an SM-VPD combination to be included in

the plot was at 120 samples.

Leaf-scale observations on uorescence yield and stomatal conductance490

have shown a concave relationship, in which the ϕF approaches a maximal491

value for high Gs values. The ϕF -Gs curve showed a concave relationship492

(e.g., Flexas et al., 2002). The same behaviour is replicated in Figure 9,493

despite of being made at the continental scale. The low Gs-region in this494

gure can be approximated with a linear curve. This is also the region where495

SM and VPD are the most constraining factors on ϕF . When looking at496

the map of the pixel-based Pearson’s correlation coecient of ϕF and Gs497

(Figure 10), the strongest correlation between Gs and ϕF is found in the498

Sahel region as well as in East Africa, but overall observed ϕF and modelled499

Gs show reasonably high correlations in most water-limited areas. A low500

and negative correlation between ϕF and Gs can be found in some parts501

of the Ethiopian Highlands as well as in the Congolese Rainforest, both502

regions where light and temperature might be the dominant controls on ϕF .503
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Figure 9: ϕF values from the SM-VPD space over the African continent during 2019-2020

(Figure 8) plotted in function of the Gs value and SM in the colourbar. Each dot represents

the ϕF average over the considered SM-VPD bin.
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A signicant correlation coecient was found all over Sub-Saharan Africa,504

albeit scattered around (Figure Appendix A.3.505

Figure 10: Pixel-based correlation between Gs and ϕF over Africa during the years 2019

and 2020. Data points with a VPD < 1.5 kPa were excluded from the analysis, to ensure

that light-limited photosynthesis is excluded. a: denotes the Sahel regions; b: denotes the

Ethiopian Highlands and C: denotes the Congo River Basin.

4. Discussion506

4.1. Interpretation of spatial patterns in global ϕF data507

The dierent phase spaces (Figure 4-8) show that the ϕF is sensitive to the508

soil, plant and atmospheric characteristics. These sensitivities are consistent509
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with the spatial gradients of ϕF that appear in gure 1. Clear examples here510

are the increase in ϕF over the Sahel region or in the Australian Outback,511

where the ϕF decreases gradually when entering the desert zone. In addi-512

tion, in some mountain areas such as those in the Western United States,513

ϕF is lower because high altitude regions tend to show a lower photosyn-514

thetic activity (Fujimura et al., 2010). Low ϕF values are mainly found in515

regions with either sparse vegetation, like the Australian Outback, or very516

low irradiations, such as Siberia. In such regions, a low SIF value is also517

expected.518

The low correlation coecient between NDVI and ϕF (gure 3) shows519

that ϕF and NDVI are fundamentally dierent, strengthening the case that520

satellite-based ϕF indeed represents the physiological component of the SIF521

emission independently of vegetation greenness. Figure 3 shows only two522

situations in which NDVI and ϕF tend to be correlated. The rst is in523

regions with high latitudes. There, high VPD values are rare, so ϕF tends524

to show a seasonality with high ϕF in summer and lower in winter, which is525

similar to the typical NDVI seasonality. Both are driven by limitations in526

temperature and irradiation which are found at high latitudes. The second527

situation where NDVI and ϕF show a high correlation is in regions where528

plants tend to shed or brown their leaves in the dry season, such as the Sahel529

region (Tagesson et al., 2015), where a strong water limitation is expected.530

This is consistent with Jonard et al. (2022), who identied a strong coupling531

between light availability and sun-induced chlorophyll uorescence tended to532

show a high ϕF -NDVI correlation coecient.533
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4.2. Global-scale interpretation of ϕF534

4.2.1. Constraining eect of SM and VPD on ϕF at the glocal scale535

While SIF data have proven their ability to detect drought stress, espe-536

cially drought onset, at the regional to global scales (e.g., Cao et al., 2021;537

Sun et al., 2015), the eects of irradiation and vegetation structure (the lat-538

ter changing fesc) might overpower ϕF (Dechant et al., 2020; Ryu et al., 2019;539

Yang and van der Tol, 2018). The structural eect include short-term vari-540

ation in fesc as a result of changes in leaf turgor (Xu et al., 2021) or due to541

wind eects (Liu et al., 2020). In addition, prolonged stress leads to a low-542

ered NDVI, an eect that persists after the stress period (Wong et al., 2021),543

which provides an additional diculty in interpreting SIF data. Working on544

ϕF comes with the advantage that it is stripped of non-physiological eects.545

546

Acknowledging the importance of the structural changes on the escape547

probability, regional-scale studies using satellite-based SIF data have shown548

that variation in ϕF has its value in drought monitoring, thanks to the sen-549

sitivity of ϕF to the eciency of the photosynthetis (Gu et al., 2023; Kimm550

et al., 2021b). In the latter studies, the reaction of ϕF to a drought is shown551

in a way similar to Figure 2. A quantitative analysis of the eect of a dry552

soil and a high vapour pressure decit on photosynthesis shows a reduction553

on photosynthetic activity under high VPD or low SM (Sulman et al., 2016;554

Novick et al., 2016). The phase spaces in our study show a similar decrease555

in ϕF depending on SM and VPD. This suggests that ϕF bears the poten-556

tial of being a tool for evaluating plant functioning under changing water557

availability and demand.558
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The changes in ϕF according to SM and VPD variability are similar to559

those occurring in Gs, as shown in Figure 8. This suggests that the link560

between Gs and ϕF , as described at the leaf scale (Flexas et al., 2002) or at561

the canopy scale (Kimm et al., 2021a) holds at the global scale. Gs is known562

to be constrained by a combination of SM and VPD, both at the ecosystem563

(Novick et al., 2019) and the local level (Zhang et al., 2021). A similar564

result is obtained for photosynthesis as such (Fu et al., 2022). This result is565

consistent with the concept of light- and water-limitation in ecosystem-scale566

photosynthesis (Jonard et al., 2022), since water limitation is assumed to567

induce a reduction in Gs through stomatal closure. As low irradiation values568

typically go together with low VPD values, the increase in ϕF at low VPD569

is likely an irradiation or a temperature eect.570

There is a signicant landscape-scale interaction between SM and VPD,571

as a high VPD (i.e., dry air) tends to dry out the soil (Liu et al., 2020),572

and dry/wet soils have also the capacity to reinforce dry/wet atmospheric573

conditions. These interactions explain why some SM-VPD combinations are574

more frequent than others, and why the high SM-high VPD combination is575

so rare (Figure 4b). In this sense, the co-regulation of SM and VPD on ϕF ,576

reported in Figure 4, can also represent a downstream eect of the dry air577

drying out the soil, or vice-versa. Determining whether SM or VPD (water578

availability or atmospheric water demand) is the main driving factor on the579

changes in ϕF would require further assessment on how SM and VPD are580

interrelated both in space and time (Feldman et al., 2020).581

While the satellite-based ϕF data and the modelled Gs provide one single582

value for large areas, local-scale studies have reported signicant within-eld583
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and within-plant variability of ϕF or SIF emission. This high degree of spa-584

tial variability nds its origins in spatial dierences in stress and irradiation585

conditions (Pinto et al., 2016; Wieneke et al., 2016; Zeng et al., 2022). In ad-586

dition to small-scale spatial variations in environmental factors, plants can587

have dierent biotic traits such as isohydricity and heat resistance. Both588

show a variation at the level of the individual plant (Bussotti et al., 2020;589

Pinto et al., 2016; Wu et al., 2020), while the phase spaces in this study590

(Figure 4-8) show the global controls of VPD and SM on ϕF . Future work591

should address specic analyses in the spatial and temporal domains. Such592

studies can answer whether the relationship behaves similarly in space and593

time.594

4.2.2. Role of non-photochemical quenching at the global scale595

The most direct way to establish a link between ϕF and Gs is to make596

leaf-scale measurements with a uorometer and a leaf chamber. A milestone597

study in this regard was Flexas et al. (2002), that observed a hyperbolic re-598

lationship between ϕF and Gs, where ϕF , as well as the photosynthetic rate,599

decrease with decreasing Gs. In the presented study, a similar relationship600

was found between TROPOMI ϕF and modelled Gs (gure 10). Helm et al.601

(2020) expanded this idea by comparing leaf-scale spectrometer SIF measure-602

ments with stomatal conductance measurements, and they found a similar603

connection between ϕF and Gs. Both studies attribute the decrease in ϕF604

or SIF to an observed increase in NPQ. While it makes sense to believe that605

the increase in NPQ is also responsible for the decrease of satellite-based ϕF606

at the global scale, it is impractical to verify this claim, as there is currently607

no reliable method for estimating NPQ from a remote sensing platform. The608
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closest we have to a remote-sensing based NPQ estimate comes from the609

PRI. Short-term PRI dynamics are closely linked to NPQ dynamics. Using610

airborne imagery over an orchard, Zarco-Tejada et al. (2012) observed a si-611

multaneous decrease in SIF, PRI and Gs, strengthening the case that the612

drought-induced decrease in canopy-scale SIF might indeed be driven by a613

decrease in Gs and an increase in NPQ. While the link between NPQ and ϕF614

at the global scale remains speculative, it is important to consider NPQ in615

the interpretation of ϕF under water-limited conditions, since the NPQ com-616

ponent forms a key element in linking ϕF to ecosystem-scale photosynthesis617

(Lee et al., 2015; Qiu et al., 2018).618

4.3. Advantage of ϕF over other remote sensing signals619

Optical remote sensing measures mainly the greenness and near-infrared620

reectance signatures of the vegetation, which then is linked to the vegetation621

health as prolonged soil moisture decit is reducing the canopy greenness.622

However, these techniques fail to capture more immediate eects of water623

limitation or stress. To do so, a variable that reacts instantly and in accor-624

dance to the stress intensity is useful. Along with ϕF measurements, two625

other techniques are indicative of environmental constraints on photosynthe-626

sis. These are the photochemical reectance index (PRI) that is sensitive627

to the NPQ component in PSII and indicators that make use of thermal628

remote sensing. PRI is driven by the stress-induced increase in ϕN , making629

its driving factors similar to the factors driving ϕF (Acebron et al., 2021;630

Alonso et al., 2017). However, the interpretation of the PRI is blurred by631

the presence of bare soil or by the canopy structure (Yang, 2022). Synergetic632

use of PRI and ϕF data is expected to lead to a better description of the633
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energy splitting at the level of PSII. Thermal remote sensing-based stress634

detection relies on the decrease in latent heat ux over the leaves because635

of reduced gas exchange. The reduction in the latent heat ux leads to an636

increase in the sensible heat ux and thus in an increase in leaf temperature637

(Maes and Steppe, 2012). This eect can be used to constrain the plant638

resistances, which allows for better modelling of the plant water and carbon639

uxes (Bayat et al., 2018). Another thermal-based technique is the crop wa-640

ter stress index (CWSI), which compares the measured canopy temperature641

to a wet and dry reference (Berger et al., 2022). These variables are notori-642

ously hard to measure, resulting in signicant errors over global CWSI-based643

stress monitoring.644

From this perspective, global ϕF is a promising variable that is linked645

in a more physiologically established way to Gs, reducing the need for an-646

cillary data in its interpretation. Specically, ϕF is mechanistically coupled647

to the PSII activity, allowing ϕF to constrain photosystem activity-related648

parameters in photosynthesis models. However, this comes at the cost of649

very strict spectral retrieval requirements. Consequently, ϕF comes with a650

coarse spatial resolution and signicant instrument noise.651

4.4. Consistent behaviour of ϕF and Gs at the continental scale652

Since ϕF carries is controlled by SM and VPD, ϕF is a promising variable653

for constraining photosynthetic electron transport at the global scale. At the654

leaf level, ϕF is mechanistically coupled to the PSII activity, allowing ϕF to655

constrain light-harvesting-related parameters in photosynthesis models. The656

consistency between the hyperbolic shape in gure 10 and the shape obtained657

by the leaf-scale study of Flexas et al. (2002) and by the regional-scale study658
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of Kimm et al. (2021b) suggest that the observation from the leaf scale on659

the link between Gs and ϕF might be useful for a solid ecosystem-scale link660

between ϕF and photosynthesis under water limitation. There are various661

hurdles to take before mechanistic-based land surface models can exploit662

this link. The rst hurdle is linked to the strict spectral requirements for663

SIF retrieval and the instrument noise. The second hurdle deals with the664

upscaling of the link between ϕF , NPQ and Gs. Given the link between665

photosynthesis and crop yield, satellite-based SIF has already improved the666

crop yield predictions (Guanter et al., 2014). Further exploring the link667

between ϕF , photosynthesis, Gs and crop yield will improve the estimations668

of crop yield under water-limited conditions.669

4.5. Perspectives for the FLuorescence EXplorer (FLEX) mission670

While the TROPOSIF data are encouraging for presenting SIF’s abil-671

ity to detect environmental constraints on photosynthesis, the rst satellite672

designated for SIF measurements is scheduled for launch in 2025. The Fluo-673

rescence Imaging Spectrometer (FLORIS) instrument on the FLEX satellite674

is planned to come with two main improvements: a ner spatial resolution675

and a higher signal-to-noise ratio. Additionally, FLEX data will be evalu-676

ated with the help of ground-based calibration-validation dataset, which is677

expected to help the interpretation of the FLEX data, providing an absolute678

ϕF scale. The spatial footprint of FLEX is in the same order of magnitude679

as the footprint of eddy covariance towers, allowing for a fairer comparison680

of spaceborne ϕF and eddy covariance estimates of Gs. A better character-681

ization of this link will help to improve global estimates of photosynthesis682

and transpiration. However, the main advantage of the TROPOSIF product683
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compared to the upcoming FLEX data is the higher temporal resolution of684

TROPOMI. A synergetic interpretation of both datasets might allow for ϕF685

and Gs estimations that are both accurate and frequent.686

4.6. Perspectives for upcoming geostationary missions687

In addition to the FLEX mission, the recently launched Tropospheric688

Emissions: Monitoring of POllution (TEMPO) mission, as well as the up-689

coming Sentinel-4 sensor on the Meteosat Third Generation-Sounder (MTG-690

S) satellite, will have capabilities of measuring SIF data (Jonard et al., 2020).691

Unlike to the TROPOMI or the FLEX mission, these missions are in geosta-692

tionary orbit, allowing them to capture the diurnal dynamics in uorescence693

emission. This opens the door for detecting the afternoon depression, a de-694

crease in photosynthesis (Xiao et al., 2021). Thermal-based geostationary695

data have already made use of the afternoon depression to reveal drought696

stress during the 2020 US Heatwave (Li et al., 2023).697

5. Conclusion698

While well-established in laboratory experiments, the uorescence yield699

(ϕF ) retrieved from remote sensing platforms is a newly established vari-700

able. Mechanistically linked to the photosynthetic electron transport, ϕF701

is promising for large-scale monitoring of vegetation water status and func-702

tioning. Here, ϕF has been retrieved at the global scale by normalizing the703

TROPOMI SIF data with the NIRvP, the latter accounting for the irradia-704

tion and canopy structure components of the signal. To gain insight into the705

environmental controls on the remotely sensed ϕF , the global ϕF data were706

set out in a phase space with remotely sensed vapour pressure decit (VPD)707
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and soil moisture (SM), from the AIRS and SMAP sensors, respectively.708

The global spatial patterns of ϕF show that these are responsive to limit-709

ing factors of photosynthesis, including water availability, solar irradiation710

or temperature, among others. Water availability and demand is described711

by the SM and VPD and drive ϕF variability in both the spatial and tempo-712

ral domains. Consequently, ϕF shows a maximum around intermediate soil713

moisture and VPD (i.e., 0.1 m3/m3<SM<0.3 m3/m3 and 1.5 kPa<VPD<2.5714

kPa). Results show that lower SM and/or higher VPD may lead to lowered715

stomatal conductance. The eect of high VPD and low SM on ϕF is stronger716

for more isohydric ecosystems, as they exert stricter control over their stom-717

atal conductance and thus also over their photosynthetic electron transport718

and water regulation in function of the environmental variables. More aniso-719

hydric ecosystems tend to have less strict control on their stomatal closure,720

allowing to maintain high rates of photosynthesis and therefore experience a721

weaker control of SM and VPD on ϕF . The ecosystem-level link between722

Gs and ϕF obtained through remote sensing data is consistent with the link723

between these variables at the leaf scale. At the leaf scale, the increase in724

NPQ is an essential factor for linking Gs and ϕF . Despite of NPQ not be-725

ing measurable from a remote sensing platform, it makes sense to believe726

that the NPQ is equally important to link ϕF and Gs at the global scale.727

Thanks to its sensitivity to VPD and SM, and carrying an imprint from728

Gs, ϕF is a very promising emerging remote sensing signal that is sensitive729

to the photosynthetic electron transport at the instant of the measurement.730

Still, we note that neither ϕF nor Gs datasets have been validated with site731

(e.g., airborne, eddy-covariance towers, etc.) data, so further comparison732
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and validation of these datasets should be done in the future. In the case733

of SIF and the reectance bands used in ϕF calculation, some calibration734

and validation activities will be undertaken for the FLEX mission. The in-735

stantaneous nature of the stress information embedded in ϕF contrasts with736

traditional, greenness-based indicators that reect a stress legacy eect than737

the instantaneous stress itself. The FLEX satellite, scheduled for launch in738

2025 will retrieve ϕF at a ner spatial scale, a ner spectral resolution, and a739

higher signal-to-noise ratio. This opens the door for eld-scale analyses and740

satellite-based modelling with ϕF .741
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