001024802 001__ 1024802
001024802 005__ 20250203103152.0
001024802 0247_ $$2doi$$a10.1021/acsenergylett.3c01638
001024802 0247_ $$2WOS$$aWOS:001096683400001
001024802 037__ $$aFZJ-2024-02468
001024802 082__ $$a333.7
001024802 1001_ $$0P:(DE-HGF)0$$aZhang, Fei$$b0
001024802 245__ $$aWeakly Solvated Electrolyte Driven Anion Interface Chemistry for Potassium Batteries/Hybrid Capacitors
001024802 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2023
001024802 3367_ $$2DRIVER$$aarticle
001024802 3367_ $$2DataCite$$aOutput Types/Journal article
001024802 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721884695_2788
001024802 3367_ $$2BibTeX$$aARTICLE
001024802 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024802 3367_ $$00$$2EndNote$$aJournal Article
001024802 520__ $$aPotassium metal batteries/hybrid capacitors (PMBs/PHCs) have attracted attention due to the abundant reserves of potassium (K), but the unstable solid electrolyte interphase (SEI) formed by conventional ether electrolytes has led to low Coulombic efficiency (CE) and reduced cycle life of PMBs/PHCs. Herein, we discovered that the CE can be significantly enhanced to 98.1% by using a weakly solvated electrolyte of 1 M KFSI/1,2-diethoxyethane (DEE). The DEE electrolyte enable K//Prussian blue full cells to achieve an energy density of 80 Wh kg–1. Additionally, K//AC capacitors deliver a specific capacity of 60 mAh g–1 with stable cycling over the course of a year. By weakening the interactions between the solvent and K+, the DEE electrolyte promotes the formation of a stable anion-dominated SEI. The robust SEI regulates the deposition of K+ ions and inhibits the growth of K dendrites. This work provides a straightforward and efficient strategy for developing high-performance PMBs/PHCs.
001024802 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024802 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024802 7001_ $$0P:(DE-HGF)0$$aWang, Xingchao$$b1$$eCorresponding author
001024802 7001_ $$0P:(DE-HGF)0$$aWu, Miaomiao$$b2
001024802 7001_ $$0P:(DE-Juel1)180575$$aYang, Aikai$$b3$$ufzj
001024802 7001_ $$0P:(DE-HGF)0$$aLi, Yudi$$b4
001024802 7001_ $$0P:(DE-HGF)0$$aMan, Mengqi$$b5
001024802 7001_ $$0P:(DE-Juel1)158022$$aLi, Yan$$b6
001024802 7001_ $$0P:(DE-HGF)0$$aGuo, Jixi$$b7$$eCorresponding author
001024802 773__ $$0PERI:(DE-600)2864177-2$$a10.1021/acsenergylett.3c01638$$gVol. 8, no. 11, p. 4895 - 4902$$n11$$p4895 - 4902$$tACS energy letters$$v8$$x2380-8195$$y2023
001024802 8564_ $$uhttps://juser.fz-juelich.de/record/1024802/files/zhang-et-al-2023-weakly-solvated-electrolyte-driven-anion-interface-chemistry-for-potassium-batteries-hybrid-capacitors.pdf$$yRestricted
001024802 8564_ $$uhttps://juser.fz-juelich.de/record/1024802/files/zhang-et-al-2023-weakly-solvated-electrolyte-driven-anion-interface-chemistry-for-potassium-batteries-hybrid-capacitors.gif?subformat=icon$$xicon$$yRestricted
001024802 8564_ $$uhttps://juser.fz-juelich.de/record/1024802/files/zhang-et-al-2023-weakly-solvated-electrolyte-driven-anion-interface-chemistry-for-potassium-batteries-hybrid-capacitors.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001024802 8564_ $$uhttps://juser.fz-juelich.de/record/1024802/files/zhang-et-al-2023-weakly-solvated-electrolyte-driven-anion-interface-chemistry-for-potassium-batteries-hybrid-capacitors.jpg?subformat=icon-180$$xicon-180$$yRestricted
001024802 8564_ $$uhttps://juser.fz-juelich.de/record/1024802/files/zhang-et-al-2023-weakly-solvated-electrolyte-driven-anion-interface-chemistry-for-potassium-batteries-hybrid-capacitors.jpg?subformat=icon-640$$xicon-640$$yRestricted
001024802 909CO $$ooai:juser.fz-juelich.de:1024802$$pVDB
001024802 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180575$$aForschungszentrum Jülich$$b3$$kFZJ
001024802 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024802 9141_ $$y2024
001024802 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS ENERGY LETT : 2022$$d2023-08-25
001024802 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001024802 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001024802 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001024802 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001024802 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001024802 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001024802 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-25
001024802 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
001024802 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bACS ENERGY LETT : 2022$$d2023-08-25
001024802 920__ $$lyes
001024802 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001024802 980__ $$ajournal
001024802 980__ $$aVDB
001024802 980__ $$aI:(DE-Juel1)IEK-1-20101013
001024802 980__ $$aUNRESTRICTED
001024802 981__ $$aI:(DE-Juel1)IMD-2-20101013