001024812 001__ 1024812
001024812 005__ 20250204113829.0
001024812 0247_ $$2doi$$a10.1016/j.jallcom.2023.172618
001024812 0247_ $$2ISSN$$a0925-8388
001024812 0247_ $$2ISSN$$a1873-4669
001024812 0247_ $$2WOS$$aWOS:001101300000002
001024812 037__ $$aFZJ-2024-02478
001024812 082__ $$a540
001024812 1001_ $$0P:(DE-HGF)0$$aWang, Pengyue$$b0
001024812 245__ $$aCoS2 confined into N-doped coal-based carbon fiber as flexible anode for high performance potassium-ion capacitor
001024812 260__ $$aLausanne$$bElsevier$$c2024
001024812 3367_ $$2DRIVER$$aarticle
001024812 3367_ $$2DataCite$$aOutput Types/Journal article
001024812 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1721825333_11493
001024812 3367_ $$2BibTeX$$aARTICLE
001024812 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024812 3367_ $$00$$2EndNote$$aJournal Article
001024812 520__ $$aPotassium-ion capacitors (PICs), skillfully combining the features of batteries and capacitors, hold promise in energy conversion and storage. Cobalt sulfide (CoS2) anode are promising alternatives due to its high theoretical capacity and excellent potassium storage capacity. However, severe volume changes of CoS2 anode leads to capacity decline and poor cycle stability, hindering its application in PICs. Herein, we successfully confine CoS2 nanoparticles in N-doped coal-based carbon fibers (CoS2/CF). Coal-based carbon fibers with flexible characteristic elevate the conductivity and relieve the volume expansion of CoS2. Moreover, the high content of edge nitrogen as active sites further enhances the electrochemical properties. The PICs with flexible CoS2/CF-0.8 as anode exhibits superior specific capacity (331.1 mA h g−1 after 150 cycles at 0.1 A g−1) and long cycling (214.1 mA h g−1 after 900 cycles at 1.0 A g−1). Ex-situ X-ray powder diffraction (XRD) reveal that the mechanism of CoS2/CF-0.8 anode is based on reversible intercalation and conversion reaction. Importantly, CoS2/CF-0.8||activated carbon (AC) devices shows excellent energy density (101.9 W h kg−1) and long cycling (82.23% capacity maintenance rate after 1000 cycles). This work offers insights for other materials with high theoretical capacity but volume expansion problem.
001024812 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024812 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024812 7001_ $$0P:(DE-HGF)0$$aHu, Tianran$$b1
001024812 7001_ $$0P:(DE-HGF)0$$aGuo, Yong$$b2
001024812 7001_ $$0P:(DE-HGF)0$$aCui, Yincang$$b3
001024812 7001_ $$0P:(DE-HGF)0$$aWang, Ruiying$$b4
001024812 7001_ $$0P:(DE-Juel1)180575$$aYang, Aikai$$b5$$ufzj
001024812 7001_ $$0P:(DE-HGF)0$$aHuang, Yudai$$b6
001024812 7001_ $$0P:(DE-HGF)0$$aWang, Xingchao$$b7$$eCorresponding author
001024812 773__ $$0PERI:(DE-600)2012675-X$$a10.1016/j.jallcom.2023.172618$$gVol. 970, p. 172618 -$$p172618 -$$tJournal of alloys and compounds$$v970$$x0925-8388$$y2024
001024812 909CO $$ooai:juser.fz-juelich.de:1024812$$pVDB
001024812 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180575$$aForschungszentrum Jülich$$b5$$kFZJ
001024812 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024812 9141_ $$y2024
001024812 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-22
001024812 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-22
001024812 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-02
001024812 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001024812 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-02
001024812 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001024812 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ALLOY COMPD : 2022$$d2025-01-02
001024812 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001024812 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-02
001024812 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-02
001024812 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ ALLOY COMPD : 2022$$d2025-01-02
001024812 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
001024812 980__ $$ajournal
001024812 980__ $$aVDB
001024812 980__ $$aI:(DE-Juel1)IEK-1-20101013
001024812 980__ $$aUNRESTRICTED
001024812 981__ $$aI:(DE-Juel1)IMD-2-20101013