001024813 001__ 1024813
001024813 005__ 20250512115736.0
001024813 0247_ $$2doi$$a10.1103/PhysRevApplied.20.064025
001024813 0247_ $$2ISSN$$a2331-7019
001024813 0247_ $$2ISSN$$a2331-7043
001024813 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02479
001024813 0247_ $$2WOS$$aWOS:001471014800002
001024813 037__ $$aFZJ-2024-02479
001024813 041__ $$aEnglish
001024813 082__ $$a530
001024813 1001_ $$00000-0002-3404-6096$$aChai, Yahui$$b0$$eCorresponding author
001024813 245__ $$aOptimal Flight-Gate Assignment on a Digital Quantum Computer
001024813 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2023
001024813 3367_ $$2DRIVER$$aarticle
001024813 3367_ $$2DataCite$$aOutput Types/Journal article
001024813 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712669904_18044
001024813 3367_ $$2BibTeX$$aARTICLE
001024813 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024813 3367_ $$00$$2EndNote$$aJournal Article
001024813 520__ $$aWe investigate the performance of the variational quantum eigensolver (VQE) for the problem of optimal flight-gate assignment. This is a combinatorial-optimization problem that aims at finding an optimal assignment of flights to the gates of an airport, in order to minimize the passenger travel time. To study the problem, we adopt a qubit-efficient binary encoding with a cyclic mapping, which is suitable for a digital quantum computer. Using this encoding in conjunction with the conditional value at risk (CVaR) as an aggregation function, we systematically explore the performance of the approach by classically simulating the CVaR VQE. Our results indicate that the method allows for finding a good solution with high probability and that it significantly outperforms the naive VQE approach. We examine the role of entanglement for the performance and find that ansätze with entangling gates allow for better results than pure product states. Studying the problem for various sizes, our numerical data show that the scaling of the number of cost-function calls for obtaining a good solution is not exponential for the regimes that we investigate in this work.
001024813 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001024813 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024813 7001_ $$00000-0001-5022-9506$$aFuncke, Lena$$b1
001024813 7001_ $$0P:(DE-HGF)0$$aHartung, Tobias$$b2
001024813 7001_ $$0P:(DE-HGF)0$$aJansen, Karl$$b3
001024813 7001_ $$0P:(DE-HGF)0$$aKühn, Stefan$$b4
001024813 7001_ $$00000-0003-4708-9340$$aStornati, Paolo$$b5
001024813 7001_ $$0P:(DE-Juel1)194697$$aStollenwerk, Tobias$$b6
001024813 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.20.064025$$gVol. 20, no. 6, p. 064025$$n6$$p064025$$tPhysical review applied$$v20$$x2331-7019$$y2023
001024813 8564_ $$uhttps://juser.fz-juelich.de/record/1024813/files/PhysRevApplied.20.064025.pdf$$yOpenAccess
001024813 8564_ $$uhttps://juser.fz-juelich.de/record/1024813/files/PhysRevApplied.20.064025.gif?subformat=icon$$xicon$$yOpenAccess
001024813 8564_ $$uhttps://juser.fz-juelich.de/record/1024813/files/PhysRevApplied.20.064025.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024813 8564_ $$uhttps://juser.fz-juelich.de/record/1024813/files/PhysRevApplied.20.064025.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024813 8564_ $$uhttps://juser.fz-juelich.de/record/1024813/files/PhysRevApplied.20.064025.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024813 909CO $$ooai:juser.fz-juelich.de:1024813$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001024813 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194697$$aForschungszentrum Jülich$$b6$$kFZJ
001024813 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001024813 9141_ $$y2024
001024813 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001024813 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001024813 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001024813 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2022$$d2023-08-25
001024813 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001024813 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001024813 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-08-25
001024813 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024813 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
001024813 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001024813 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001024813 920__ $$lyes
001024813 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001024813 980__ $$ajournal
001024813 980__ $$aVDB
001024813 980__ $$aUNRESTRICTED
001024813 980__ $$aI:(DE-Juel1)PGI-12-20200716
001024813 9801_ $$aFullTexts