| Hauptseite > Publikationsdatenbank > Optimal Flight-Gate Assignment on a Digital Quantum Computer > print |
| 001 | 1024813 | ||
| 005 | 20250512115736.0 | ||
| 024 | 7 | _ | |a 10.1103/PhysRevApplied.20.064025 |2 doi |
| 024 | 7 | _ | |a 2331-7019 |2 ISSN |
| 024 | 7 | _ | |a 2331-7043 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2024-02479 |2 datacite_doi |
| 024 | 7 | _ | |a WOS:001471014800002 |2 WOS |
| 037 | _ | _ | |a FZJ-2024-02479 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Chai, Yahui |0 0000-0002-3404-6096 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Optimal Flight-Gate Assignment on a Digital Quantum Computer |
| 260 | _ | _ | |a College Park, Md. [u.a.] |c 2023 |b American Physical Society |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712669904_18044 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a We investigate the performance of the variational quantum eigensolver (VQE) for the problem of optimal flight-gate assignment. This is a combinatorial-optimization problem that aims at finding an optimal assignment of flights to the gates of an airport, in order to minimize the passenger travel time. To study the problem, we adopt a qubit-efficient binary encoding with a cyclic mapping, which is suitable for a digital quantum computer. Using this encoding in conjunction with the conditional value at risk (CVaR) as an aggregation function, we systematically explore the performance of the approach by classically simulating the CVaR VQE. Our results indicate that the method allows for finding a good solution with high probability and that it significantly outperforms the naive VQE approach. We examine the role of entanglement for the performance and find that ansätze with entangling gates allow for better results than pure product states. Studying the problem for various sizes, our numerical data show that the scaling of the number of cost-function calls for obtaining a good solution is not exponential for the regimes that we investigate in this work. |
| 536 | _ | _ | |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522) |0 G:(DE-HGF)POF4-5221 |c POF4-522 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Funcke, Lena |0 0000-0001-5022-9506 |b 1 |
| 700 | 1 | _ | |a Hartung, Tobias |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Jansen, Karl |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Kühn, Stefan |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Stornati, Paolo |0 0000-0003-4708-9340 |b 5 |
| 700 | 1 | _ | |a Stollenwerk, Tobias |0 P:(DE-Juel1)194697 |b 6 |
| 773 | _ | _ | |a 10.1103/PhysRevApplied.20.064025 |g Vol. 20, no. 6, p. 064025 |0 PERI:(DE-600)2760310-6 |n 6 |p 064025 |t Physical review applied |v 20 |y 2023 |x 2331-7019 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1024813/files/PhysRevApplied.20.064025.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1024813/files/PhysRevApplied.20.064025.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1024813/files/PhysRevApplied.20.064025.jpg?subformat=icon-1440 |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1024813/files/PhysRevApplied.20.064025.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1024813/files/PhysRevApplied.20.064025.jpg?subformat=icon-640 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1024813 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)194697 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-522 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Quantum Computing |9 G:(DE-HGF)POF4-5221 |x 0 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-08-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-25 |
| 915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PHYS REV APPL : 2022 |d 2023-08-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-08-25 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-25 |
| 915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2023-08-25 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-08-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-08-25 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-08-25 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-12-20200716 |k PGI-12 |l Quantum Computing Analytics |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-12-20200716 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|