001     1024813
005     20250512115736.0
024 7 _ |a 10.1103/PhysRevApplied.20.064025
|2 doi
024 7 _ |a 2331-7019
|2 ISSN
024 7 _ |a 2331-7043
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02479
|2 datacite_doi
024 7 _ |a WOS:001471014800002
|2 WOS
037 _ _ |a FZJ-2024-02479
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Chai, Yahui
|0 0000-0002-3404-6096
|b 0
|e Corresponding author
245 _ _ |a Optimal Flight-Gate Assignment on a Digital Quantum Computer
260 _ _ |a College Park, Md. [u.a.]
|c 2023
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712669904_18044
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We investigate the performance of the variational quantum eigensolver (VQE) for the problem of optimal flight-gate assignment. This is a combinatorial-optimization problem that aims at finding an optimal assignment of flights to the gates of an airport, in order to minimize the passenger travel time. To study the problem, we adopt a qubit-efficient binary encoding with a cyclic mapping, which is suitable for a digital quantum computer. Using this encoding in conjunction with the conditional value at risk (CVaR) as an aggregation function, we systematically explore the performance of the approach by classically simulating the CVaR VQE. Our results indicate that the method allows for finding a good solution with high probability and that it significantly outperforms the naive VQE approach. We examine the role of entanglement for the performance and find that ansätze with entangling gates allow for better results than pure product states. Studying the problem for various sizes, our numerical data show that the scaling of the number of cost-function calls for obtaining a good solution is not exponential for the regimes that we investigate in this work.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Funcke, Lena
|0 0000-0001-5022-9506
|b 1
700 1 _ |a Hartung, Tobias
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Jansen, Karl
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kühn, Stefan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Stornati, Paolo
|0 0000-0003-4708-9340
|b 5
700 1 _ |a Stollenwerk, Tobias
|0 P:(DE-Juel1)194697
|b 6
773 _ _ |a 10.1103/PhysRevApplied.20.064025
|g Vol. 20, no. 6, p. 064025
|0 PERI:(DE-600)2760310-6
|n 6
|p 064025
|t Physical review applied
|v 20
|y 2023
|x 2331-7019
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024813/files/PhysRevApplied.20.064025.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024813/files/PhysRevApplied.20.064025.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024813/files/PhysRevApplied.20.064025.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024813/files/PhysRevApplied.20.064025.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024813/files/PhysRevApplied.20.064025.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024813
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)194697
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV APPL : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-08-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-12-20200716
|k PGI-12
|l Quantum Computing Analytics
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-12-20200716
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21