001024817 001__ 1024817
001024817 005__ 20250204113829.0
001024817 0247_ $$2doi$$a10.1073/pnas.2308478121
001024817 0247_ $$2ISSN$$a0027-8424
001024817 0247_ $$2ISSN$$a1091-6490
001024817 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02483
001024817 0247_ $$2pmid$$a38489389
001024817 0247_ $$2WOS$$aWOS:001206418700003
001024817 037__ $$aFZJ-2024-02483
001024817 082__ $$a500
001024817 1001_ $$00000-0002-0409-8354$$aBolton, Rachel$$b0
001024817 245__ $$aA redox switch allows binding of Fe(II) and Fe(III) ions in the cyanobacterial iron-binding protein FutA from Prochlorococcus
001024817 260__ $$aWashington, DC$$bNational Acad. of Sciences$$c2024
001024817 3367_ $$2DRIVER$$aarticle
001024817 3367_ $$2DataCite$$aOutput Types/Journal article
001024817 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712732844_16562
001024817 3367_ $$2BibTeX$$aARTICLE
001024817 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024817 3367_ $$00$$2EndNote$$aJournal Article
001024817 520__ $$aThe marine cyanobacterium Prochlorococcus is a main contributor to global photosynthesis, whilst being limited by iron availability. Cyanobacterial genomes generally encode two different types of FutA iron-binding proteins: periplasmic FutA2 ABC transporter subunits bind Fe(III), while cytosolic FutA1 binds Fe(II). Owing to their small size and their economized genome Prochlorococcus ecotypes typically possess a single futA gene. How the encoded FutA protein might bind different Fe oxidation states was previously unknown. Here, we use structural biology techniques at room temperature to probe the dynamic behavior of FutA. Neutron diffraction confirmed four negatively charged tyrosinates, that together with a neutral water molecule coordinate iron in trigonal bipyramidal geometry. Positioning of the positively charged Arg103 side chain in the second coordination shell yields an overall charge-neutral Fe(III) binding state in structures determined by neutron diffraction and serial femtosecond crystallography. Conventional rotation X-ray crystallography using a home source revealed X-ray-induced photoreduction of the iron center with observation of the Fe(II) binding state; here, an additional positioning of the Arg203 side chain in the second coordination shell maintained an overall charge neutral Fe(II) binding site. Dose series using serial synchrotron crystallography and an XFEL X-ray pump–probe approach capture the transition between Fe(III) and Fe(II) states, revealing how Arg203 operates as a switch to accommodate the different iron oxidation states. This switching ability of the Prochlorococcus FutA protein may reflect ecological adaptation by genome streamlining and loss of specialized FutA proteins.
001024817 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x0
001024817 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x1
001024817 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024817 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
001024817 65017 $$0V:(DE-MLZ)GC-130-2016$$2V:(DE-HGF)$$aHealth and Life$$x0
001024817 693__ $$0EXP:(DE-MLZ)BIODIFF-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)BIODIFF-20140101$$6EXP:(DE-MLZ)NL1-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eBIODIFF: Diffractometer for large unit cells$$fNL1$$x0
001024817 7001_ $$00009-0008-2328-6271$$aMachelett, Moritz M.$$b1
001024817 7001_ $$00000-0002-3788-1687$$aStubbs, Jack$$b2
001024817 7001_ $$00000-0001-7694-8525$$aAxford, Danny$$b3
001024817 7001_ $$00000-0003-0025-0213$$aCaramello, Nicolas$$b4
001024817 7001_ $$00000-0002-5641-0098$$aCatapano, Lucrezia$$b5
001024817 7001_ $$0P:(DE-HGF)0$$aMalý, Martin$$b6
001024817 7001_ $$00000-0003-1243-903X$$aRodrigues, Matthew J.$$b7
001024817 7001_ $$00000-0003-2321-8144$$aCordery, Charlotte$$b8
001024817 7001_ $$0P:(DE-HGF)0$$aTizzard, Graham J.$$b9
001024817 7001_ $$00000-0002-2410-4790$$aMacMillan, Fraser$$b10
001024817 7001_ $$00000-0001-8680-6790$$aEngilberge, Sylvain$$b11
001024817 7001_ $$00000-0001-7906-9788$$avon Stetten, David$$b12
001024817 7001_ $$00000-0002-8971-0759$$aTosha, Takehiko$$b13
001024817 7001_ $$00000-0002-3140-8362$$aSugimoto, Hiroshi$$b14
001024817 7001_ $$00000-0002-1863-834X$$aWorrall, Jonathan A. R.$$b15
001024817 7001_ $$0P:(DE-HGF)0$$aWebb, Jeremy S.$$b16
001024817 7001_ $$0P:(DE-HGF)0$$aZubkov, Mike$$b17
001024817 7001_ $$0P:(DE-HGF)0$$aColes, Simon$$b18
001024817 7001_ $$00000-0001-8032-4790$$aMathieu, Eric$$b19
001024817 7001_ $$00000-0001-7084-9745$$aSteiner, Roberto A.$$b20
001024817 7001_ $$0P:(DE-HGF)0$$aMurshudov, Garib$$b21
001024817 7001_ $$0P:(DE-Juel1)138266$$aSchrader, Tobias E.$$b22
001024817 7001_ $$00000-0002-7803-1777$$aOrville, Allen M.$$b23
001024817 7001_ $$00000-0002-1919-8649$$aRoyant, Antoine$$b24
001024817 7001_ $$0P:(DE-HGF)0$$aEvans, Gwyndaf$$b25
001024817 7001_ $$00000-0001-7377-6713$$aHough, Michael A.$$b26
001024817 7001_ $$00000-0002-2104-7057$$aOwen, Robin L.$$b27
001024817 7001_ $$00000-0002-4704-1139$$aTews, Ivo$$b28$$eCorresponding author
001024817 773__ $$0PERI:(DE-600)1461794-8$$a10.1073/pnas.2308478121$$gVol. 121, no. 12, p. e2308478121$$n12$$pe2308478121$$tProceedings of the National Academy of Sciences of the United States of America$$v121$$x0027-8424$$y2024
001024817 8564_ $$uhttps://juser.fz-juelich.de/record/1024817/files/Bolton_22-04-03TS.docx$$yOpenAccess
001024817 909CO $$ooai:juser.fz-juelich.de:1024817$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
001024817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138266$$aForschungszentrum Jülich$$b22$$kFZJ
001024817 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x0
001024817 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x1
001024817 9141_ $$y2024
001024817 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-26
001024817 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-08-26
001024817 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-26
001024817 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024817 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-10$$wger
001024817 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bP NATL ACAD SCI USA : 2022$$d2024-12-10
001024817 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001024817 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001024817 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-10
001024817 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-10
001024817 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001024817 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2024-12-10
001024817 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2024-12-10
001024817 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-10
001024817 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-10
001024817 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001024817 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bP NATL ACAD SCI USA : 2022$$d2024-12-10
001024817 920__ $$lyes
001024817 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
001024817 9201_ $$0I:(DE-Juel1)JCNS-4-20201012$$kJCNS-4$$lJCNS-4$$x1
001024817 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
001024817 980__ $$ajournal
001024817 980__ $$aVDB
001024817 980__ $$aUNRESTRICTED
001024817 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
001024817 980__ $$aI:(DE-Juel1)JCNS-4-20201012
001024817 980__ $$aI:(DE-588b)4597118-3
001024817 9801_ $$aFullTexts