| Home > Publications database > A redox switch allows binding of Fe(II) and Fe(III) ions in the cyanobacterial iron-binding protein FutA from Prochlorococcus > print |
| 001 | 1024817 | ||
| 005 | 20250204113829.0 | ||
| 024 | 7 | _ | |a 10.1073/pnas.2308478121 |2 doi |
| 024 | 7 | _ | |a 0027-8424 |2 ISSN |
| 024 | 7 | _ | |a 1091-6490 |2 ISSN |
| 024 | 7 | _ | |a 10.34734/FZJ-2024-02483 |2 datacite_doi |
| 024 | 7 | _ | |a 38489389 |2 pmid |
| 024 | 7 | _ | |a WOS:001206418700003 |2 WOS |
| 037 | _ | _ | |a FZJ-2024-02483 |
| 082 | _ | _ | |a 500 |
| 100 | 1 | _ | |a Bolton, Rachel |0 0000-0002-0409-8354 |b 0 |
| 245 | _ | _ | |a A redox switch allows binding of Fe(II) and Fe(III) ions in the cyanobacterial iron-binding protein FutA from Prochlorococcus |
| 260 | _ | _ | |a Washington, DC |c 2024 |b National Acad. of Sciences |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712732844_16562 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a The marine cyanobacterium Prochlorococcus is a main contributor to global photosynthesis, whilst being limited by iron availability. Cyanobacterial genomes generally encode two different types of FutA iron-binding proteins: periplasmic FutA2 ABC transporter subunits bind Fe(III), while cytosolic FutA1 binds Fe(II). Owing to their small size and their economized genome Prochlorococcus ecotypes typically possess a single futA gene. How the encoded FutA protein might bind different Fe oxidation states was previously unknown. Here, we use structural biology techniques at room temperature to probe the dynamic behavior of FutA. Neutron diffraction confirmed four negatively charged tyrosinates, that together with a neutral water molecule coordinate iron in trigonal bipyramidal geometry. Positioning of the positively charged Arg103 side chain in the second coordination shell yields an overall charge-neutral Fe(III) binding state in structures determined by neutron diffraction and serial femtosecond crystallography. Conventional rotation X-ray crystallography using a home source revealed X-ray-induced photoreduction of the iron center with observation of the Fe(II) binding state; here, an additional positioning of the Arg203 side chain in the second coordination shell maintained an overall charge neutral Fe(II) binding site. Dose series using serial synchrotron crystallography and an XFEL X-ray pump–probe approach capture the transition between Fe(III) and Fe(II) states, revealing how Arg203 operates as a switch to accommodate the different iron oxidation states. This switching ability of the Prochlorococcus FutA protein may reflect ecological adaptation by genome streamlining and loss of specialized FutA proteins. |
| 536 | _ | _ | |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4) |0 G:(DE-HGF)POF4-6G4 |c POF4-6G4 |f POF IV |x 0 |
| 536 | _ | _ | |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632) |0 G:(DE-HGF)POF4-632 |c POF4-632 |f POF IV |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 650 | 2 | 7 | |a Biology |0 V:(DE-MLZ)SciArea-160 |2 V:(DE-HGF) |x 0 |
| 650 | 1 | 7 | |a Health and Life |0 V:(DE-MLZ)GC-130-2016 |2 V:(DE-HGF) |x 0 |
| 693 | _ | _ | |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz |e BIODIFF: Diffractometer for large unit cells |f NL1 |1 EXP:(DE-MLZ)FRMII-20140101 |0 EXP:(DE-MLZ)BIODIFF-20140101 |5 EXP:(DE-MLZ)BIODIFF-20140101 |6 EXP:(DE-MLZ)NL1-20140101 |x 0 |
| 700 | 1 | _ | |a Machelett, Moritz M. |0 0009-0008-2328-6271 |b 1 |
| 700 | 1 | _ | |a Stubbs, Jack |0 0000-0002-3788-1687 |b 2 |
| 700 | 1 | _ | |a Axford, Danny |0 0000-0001-7694-8525 |b 3 |
| 700 | 1 | _ | |a Caramello, Nicolas |0 0000-0003-0025-0213 |b 4 |
| 700 | 1 | _ | |a Catapano, Lucrezia |0 0000-0002-5641-0098 |b 5 |
| 700 | 1 | _ | |a Malý, Martin |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Rodrigues, Matthew J. |0 0000-0003-1243-903X |b 7 |
| 700 | 1 | _ | |a Cordery, Charlotte |0 0000-0003-2321-8144 |b 8 |
| 700 | 1 | _ | |a Tizzard, Graham J. |0 P:(DE-HGF)0 |b 9 |
| 700 | 1 | _ | |a MacMillan, Fraser |0 0000-0002-2410-4790 |b 10 |
| 700 | 1 | _ | |a Engilberge, Sylvain |0 0000-0001-8680-6790 |b 11 |
| 700 | 1 | _ | |a von Stetten, David |0 0000-0001-7906-9788 |b 12 |
| 700 | 1 | _ | |a Tosha, Takehiko |0 0000-0002-8971-0759 |b 13 |
| 700 | 1 | _ | |a Sugimoto, Hiroshi |0 0000-0002-3140-8362 |b 14 |
| 700 | 1 | _ | |a Worrall, Jonathan A. R. |0 0000-0002-1863-834X |b 15 |
| 700 | 1 | _ | |a Webb, Jeremy S. |0 P:(DE-HGF)0 |b 16 |
| 700 | 1 | _ | |a Zubkov, Mike |0 P:(DE-HGF)0 |b 17 |
| 700 | 1 | _ | |a Coles, Simon |0 P:(DE-HGF)0 |b 18 |
| 700 | 1 | _ | |a Mathieu, Eric |0 0000-0001-8032-4790 |b 19 |
| 700 | 1 | _ | |a Steiner, Roberto A. |0 0000-0001-7084-9745 |b 20 |
| 700 | 1 | _ | |a Murshudov, Garib |0 P:(DE-HGF)0 |b 21 |
| 700 | 1 | _ | |a Schrader, Tobias E. |0 P:(DE-Juel1)138266 |b 22 |
| 700 | 1 | _ | |a Orville, Allen M. |0 0000-0002-7803-1777 |b 23 |
| 700 | 1 | _ | |a Royant, Antoine |0 0000-0002-1919-8649 |b 24 |
| 700 | 1 | _ | |a Evans, Gwyndaf |0 P:(DE-HGF)0 |b 25 |
| 700 | 1 | _ | |a Hough, Michael A. |0 0000-0001-7377-6713 |b 26 |
| 700 | 1 | _ | |a Owen, Robin L. |0 0000-0002-2104-7057 |b 27 |
| 700 | 1 | _ | |a Tews, Ivo |0 0000-0002-4704-1139 |b 28 |e Corresponding author |
| 773 | _ | _ | |a 10.1073/pnas.2308478121 |g Vol. 121, no. 12, p. e2308478121 |0 PERI:(DE-600)1461794-8 |n 12 |p e2308478121 |t Proceedings of the National Academy of Sciences of the United States of America |v 121 |y 2024 |x 0027-8424 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/1024817/files/Bolton_22-04-03TS.docx |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:1024817 |p openaire |p open_access |p driver |p VDB:MLZ |p VDB |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 22 |6 P:(DE-Juel1)138266 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Großgeräte: Materie |1 G:(DE-HGF)POF4-6G0 |0 G:(DE-HGF)POF4-6G4 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Jülich Centre for Neutron Research (JCNS) (FZJ) |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Materie |l Von Materie zu Materialien und Leben |1 G:(DE-HGF)POF4-630 |0 G:(DE-HGF)POF4-632 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-600 |4 G:(DE-HGF)POF |v Materials – Quantum, Complex and Functional Materials |x 1 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-08-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2023-08-26 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-08-26 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a National-Konsortium |0 StatID:(DE-HGF)0430 |2 StatID |d 2024-12-10 |w ger |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b P NATL ACAD SCI USA : 2022 |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2024-12-10 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2024-12-10 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-10 |
| 915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b P NATL ACAD SCI USA : 2022 |d 2024-12-10 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)JCNS-FRM-II-20110218 |k JCNS-FRM-II |l JCNS-FRM-II |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)JCNS-4-20201012 |k JCNS-4 |l JCNS-4 |x 1 |
| 920 | 1 | _ | |0 I:(DE-588b)4597118-3 |k MLZ |l Heinz Maier-Leibnitz Zentrum |x 2 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)JCNS-FRM-II-20110218 |
| 980 | _ | _ | |a I:(DE-Juel1)JCNS-4-20201012 |
| 980 | _ | _ | |a I:(DE-588b)4597118-3 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|