001     1024817
005     20250204113829.0
024 7 _ |a 10.1073/pnas.2308478121
|2 doi
024 7 _ |a 0027-8424
|2 ISSN
024 7 _ |a 1091-6490
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02483
|2 datacite_doi
024 7 _ |a 38489389
|2 pmid
024 7 _ |a WOS:001206418700003
|2 WOS
037 _ _ |a FZJ-2024-02483
082 _ _ |a 500
100 1 _ |a Bolton, Rachel
|0 0000-0002-0409-8354
|b 0
245 _ _ |a A redox switch allows binding of Fe(II) and Fe(III) ions in the cyanobacterial iron-binding protein FutA from Prochlorococcus
260 _ _ |a Washington, DC
|c 2024
|b National Acad. of Sciences
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712732844_16562
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The marine cyanobacterium Prochlorococcus is a main contributor to global photosynthesis, whilst being limited by iron availability. Cyanobacterial genomes generally encode two different types of FutA iron-binding proteins: periplasmic FutA2 ABC transporter subunits bind Fe(III), while cytosolic FutA1 binds Fe(II). Owing to their small size and their economized genome Prochlorococcus ecotypes typically possess a single futA gene. How the encoded FutA protein might bind different Fe oxidation states was previously unknown. Here, we use structural biology techniques at room temperature to probe the dynamic behavior of FutA. Neutron diffraction confirmed four negatively charged tyrosinates, that together with a neutral water molecule coordinate iron in trigonal bipyramidal geometry. Positioning of the positively charged Arg103 side chain in the second coordination shell yields an overall charge-neutral Fe(III) binding state in structures determined by neutron diffraction and serial femtosecond crystallography. Conventional rotation X-ray crystallography using a home source revealed X-ray-induced photoreduction of the iron center with observation of the Fe(II) binding state; here, an additional positioning of the Arg203 side chain in the second coordination shell maintained an overall charge neutral Fe(II) binding site. Dose series using serial synchrotron crystallography and an XFEL X-ray pump–probe approach capture the transition between Fe(III) and Fe(II) states, revealing how Arg203 operates as a switch to accommodate the different iron oxidation states. This switching ability of the Prochlorococcus FutA protein may reflect ecological adaptation by genome streamlining and loss of specialized FutA proteins.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 0
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 0
650 1 7 |a Health and Life
|0 V:(DE-MLZ)GC-130-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e BIODIFF: Diffractometer for large unit cells
|f NL1
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)BIODIFF-20140101
|5 EXP:(DE-MLZ)BIODIFF-20140101
|6 EXP:(DE-MLZ)NL1-20140101
|x 0
700 1 _ |a Machelett, Moritz M.
|0 0009-0008-2328-6271
|b 1
700 1 _ |a Stubbs, Jack
|0 0000-0002-3788-1687
|b 2
700 1 _ |a Axford, Danny
|0 0000-0001-7694-8525
|b 3
700 1 _ |a Caramello, Nicolas
|0 0000-0003-0025-0213
|b 4
700 1 _ |a Catapano, Lucrezia
|0 0000-0002-5641-0098
|b 5
700 1 _ |a Malý, Martin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Rodrigues, Matthew J.
|0 0000-0003-1243-903X
|b 7
700 1 _ |a Cordery, Charlotte
|0 0000-0003-2321-8144
|b 8
700 1 _ |a Tizzard, Graham J.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a MacMillan, Fraser
|0 0000-0002-2410-4790
|b 10
700 1 _ |a Engilberge, Sylvain
|0 0000-0001-8680-6790
|b 11
700 1 _ |a von Stetten, David
|0 0000-0001-7906-9788
|b 12
700 1 _ |a Tosha, Takehiko
|0 0000-0002-8971-0759
|b 13
700 1 _ |a Sugimoto, Hiroshi
|0 0000-0002-3140-8362
|b 14
700 1 _ |a Worrall, Jonathan A. R.
|0 0000-0002-1863-834X
|b 15
700 1 _ |a Webb, Jeremy S.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Zubkov, Mike
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Coles, Simon
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Mathieu, Eric
|0 0000-0001-8032-4790
|b 19
700 1 _ |a Steiner, Roberto A.
|0 0000-0001-7084-9745
|b 20
700 1 _ |a Murshudov, Garib
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Schrader, Tobias E.
|0 P:(DE-Juel1)138266
|b 22
700 1 _ |a Orville, Allen M.
|0 0000-0002-7803-1777
|b 23
700 1 _ |a Royant, Antoine
|0 0000-0002-1919-8649
|b 24
700 1 _ |a Evans, Gwyndaf
|0 P:(DE-HGF)0
|b 25
700 1 _ |a Hough, Michael A.
|0 0000-0001-7377-6713
|b 26
700 1 _ |a Owen, Robin L.
|0 0000-0002-2104-7057
|b 27
700 1 _ |a Tews, Ivo
|0 0000-0002-4704-1139
|b 28
|e Corresponding author
773 _ _ |a 10.1073/pnas.2308478121
|g Vol. 121, no. 12, p. e2308478121
|0 PERI:(DE-600)1461794-8
|n 12
|p e2308478121
|t Proceedings of the National Academy of Sciences of the United States of America
|v 121
|y 2024
|x 0027-8424
856 4 _ |u https://juser.fz-juelich.de/record/1024817/files/Bolton_22-04-03TS.docx
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1024817
|p openaire
|p open_access
|p driver
|p VDB:MLZ
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)138266
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 1
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2024-12-10
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b P NATL ACAD SCI USA : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b P NATL ACAD SCI USA : 2022
|d 2024-12-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-4-20201012
|k JCNS-4
|l JCNS-4
|x 1
920 1 _ |0 I:(DE-588b)4597118-3
|k MLZ
|l Heinz Maier-Leibnitz Zentrum
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-4-20201012
980 _ _ |a I:(DE-588b)4597118-3
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21