001024835 001__ 1024835
001024835 005__ 20250203124528.0
001024835 0247_ $$2doi$$a10.1038/s44220-023-00143-8
001024835 0247_ $$2WOS$$aWOS:001390101200002
001024835 037__ $$aFZJ-2024-02501
001024835 082__ $$a610
001024835 1001_ $$0P:(DE-HGF)0$$aJiang, Lin$$b0
001024835 245__ $$aSpatial–rhythmic network as a biomarker of familial risk for psychotic bipolar disorder
001024835 260__ $$aLondon$$bNature Publishing Group UK$$c2023
001024835 3367_ $$2DRIVER$$aarticle
001024835 3367_ $$2DataCite$$aOutput Types/Journal article
001024835 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712673845_18040
001024835 3367_ $$2BibTeX$$aARTICLE
001024835 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024835 3367_ $$00$$2EndNote$$aJournal Article
001024835 520__ $$aNeuronal rhythms with different temporospatial dynamics are prominent signatures of brain operation. Yet, the synchronous coupling across multiple rhythms and spatially distributed subsystems, as well as its role in brain cognition and disease, remains mysterious. Here we proposed a conceptually new framework to construct the large-scale spatial–rhythmic network (SRN) and apply it to case–control P300 electroencephalogram datasets. Results show that SRN configurations are essential substrates of attentional allocation and immediate memory for healthy controls (N = 235), yielding prominent inter-rhythmic interactions between the δ-frontoparietal/δ-limbic network and other rhythmic subnetworks during P300 generation. Importantly, SRN deviances shared by patients with bipolar disorder (N = 188) and their first-degree relatives (N = 201) might be putative electrophysiological biomarkers for clinical screening of individuals at high familial risk of disease onset. The findings emphasize that configurations of SRNs have a previously unrecognized role in cognitive (dys)functions.
001024835 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001024835 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024835 7001_ $$0P:(DE-HGF)0$$aLiang, Yi$$b1
001024835 7001_ $$0P:(DE-Juel1)161225$$aGenon, Sarah$$b2
001024835 7001_ $$0P:(DE-HGF)0$$aHe, Runyang$$b3
001024835 7001_ $$0P:(DE-HGF)0$$aYang, Qingqing$$b4
001024835 7001_ $$0P:(DE-HGF)0$$aYi, Chanlin$$b5
001024835 7001_ $$0P:(DE-HGF)0$$aYu, Liang$$b6
001024835 7001_ $$0P:(DE-HGF)0$$aYao, Dezhong$$b7
001024835 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b8$$ufzj
001024835 7001_ $$0P:(DE-HGF)0$$aDong, Debo$$b9$$eCorresponding author
001024835 7001_ $$0P:(DE-HGF)0$$aLi, Fali$$b10
001024835 7001_ $$0P:(DE-HGF)0$$aXu, Peng$$b11
001024835 773__ $$0PERI:(DE-600)3123130-5$$a10.1038/s44220-023-00143-8$$gVol. 1, no. 11, p. 887 - 899$$n11$$p887 - 899$$tNature Mental Health$$v1$$x2731-6076$$y2023
001024835 909CO $$ooai:juser.fz-juelich.de:1024835$$pVDB
001024835 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161225$$aForschungszentrum Jülich$$b2$$kFZJ
001024835 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)161225$$a HHU Düsseldorf$$b2
001024835 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b8$$kFZJ
001024835 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)131678$$a HHU Düsseldorf$$b8
001024835 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Faculty of Psychology, Southwest University, Chongqing, China$$b9
001024835 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001024835 9141_ $$y2024
001024835 915__ $$0StatID:(DE-HGF)3003$$2StatID$$aDEAL Nature$$d2023-08-22$$wger
001024835 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-22
001024835 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001024835 980__ $$ajournal
001024835 980__ $$aVDB
001024835 980__ $$aI:(DE-Juel1)INM-7-20090406
001024835 980__ $$aUNRESTRICTED