001     1024835
005     20250203124528.0
024 7 _ |a 10.1038/s44220-023-00143-8
|2 doi
024 7 _ |a WOS:001390101200002
|2 WOS
037 _ _ |a FZJ-2024-02501
082 _ _ |a 610
100 1 _ |a Jiang, Lin
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Spatial–rhythmic network as a biomarker of familial risk for psychotic bipolar disorder
260 _ _ |a London
|c 2023
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712673845_18040
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Neuronal rhythms with different temporospatial dynamics are prominent signatures of brain operation. Yet, the synchronous coupling across multiple rhythms and spatially distributed subsystems, as well as its role in brain cognition and disease, remains mysterious. Here we proposed a conceptually new framework to construct the large-scale spatial–rhythmic network (SRN) and apply it to case–control P300 electroencephalogram datasets. Results show that SRN configurations are essential substrates of attentional allocation and immediate memory for healthy controls (N = 235), yielding prominent inter-rhythmic interactions between the δ-frontoparietal/δ-limbic network and other rhythmic subnetworks during P300 generation. Importantly, SRN deviances shared by patients with bipolar disorder (N = 188) and their first-degree relatives (N = 201) might be putative electrophysiological biomarkers for clinical screening of individuals at high familial risk of disease onset. The findings emphasize that configurations of SRNs have a previously unrecognized role in cognitive (dys)functions.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Liang, Yi
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Genon, Sarah
|0 P:(DE-Juel1)161225
|b 2
700 1 _ |a He, Runyang
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Yang, Qingqing
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Yi, Chanlin
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Yu, Liang
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Yao, Dezhong
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 8
|u fzj
700 1 _ |a Dong, Debo
|0 P:(DE-HGF)0
|b 9
|e Corresponding author
700 1 _ |a Li, Fali
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Xu, Peng
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1038/s44220-023-00143-8
|g Vol. 1, no. 11, p. 887 - 899
|0 PERI:(DE-600)3123130-5
|n 11
|p 887 - 899
|t Nature Mental Health
|v 1
|y 2023
|x 2731-6076
909 C O |o oai:juser.fz-juelich.de:1024835
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161225
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)161225
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 8
|6 P:(DE-Juel1)131678
910 1 _ |a Faculty of Psychology, Southwest University, Chongqing, China
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2024
915 _ _ |a DEAL Nature
|0 StatID:(DE-HGF)3003
|2 StatID
|d 2023-08-22
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-22
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21