001     1024839
005     20250203103156.0
024 7 _ |a 10.1038/s41398-022-02301-5
|2 doi
024 7 _ |a 10.34734/FZJ-2024-02505
|2 datacite_doi
024 7 _ |a 36596778
|2 pmid
024 7 _ |a WOS:000907127600001
|2 WOS
037 _ _ |a FZJ-2024-02505
082 _ _ |a 610
100 1 _ |a Morys, Filip
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Neuroanatomical correlates of genetic risk for obesity in children
260 _ _ |a London
|c 2023
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712674009_18041
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Obesity has a strong genetic component, with up to 20% of variance in body mass index (BMI) being accounted for by common polygenic variation. Most genetic polymorphisms associated with BMI are related to genes expressed in the central nervous system. At the same time, higher BMI is associated with neurocognitive changes. However, the direct link between genetics of obesity and neurobehavioral mechanisms related to weight gain is missing. Here, we use a large sample of participants (n > 4000) from the Adolescent Brain Cognitive Development cohort to investigate how genetic risk for obesity, expressed as polygenic risk score for BMI (BMI-PRS), is related to brain and behavioral measures in adolescents. In a series of analyses, we show that BMI-PRS is related to lower cortical volume and thickness in the frontal and temporal areas, relative to age-expected values. Relatedly, using structural equation modeling, we find that lower overall cortical volume is associated with higher impulsivity, which in turn is related to an increase in BMI 1 year later. In sum, our study shows that obesity might partially stem from genetic risk as expressed in brain changes in the frontal and temporal brain areas, and changes in impulsivity.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
536 _ _ |a 5251 - Multilevel Brain Organization and Variability (POF4-525)
|0 G:(DE-HGF)POF4-5251
|c POF4-525
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Yu, Eric
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Shishikura, Mari
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Paquola, Casey
|0 P:(DE-Juel1)187055
|b 3
|u fzj
700 1 _ |a Vainik, Uku
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Nave, Gideon
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Koellinger, Philipp
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Gan-Or, Ziv
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Dagher, Alain
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1038/s41398-022-02301-5
|g Vol. 13, no. 1, p. 1
|0 PERI:(DE-600)2609311-X
|n 1
|p 1
|t Translational Psychiatry
|v 13
|y 2023
|x 2158-3188
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024839/files/s41398-022-02301-5.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024839/files/s41398-022-02301-5.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024839/files/s41398-022-02301-5.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024839/files/s41398-022-02301-5.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024839/files/s41398-022-02301-5.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024839
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Montreal Neurological Institute, McGill University, Montréal, Canada
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)187055
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5251
|x 1
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b TRANSL PSYCHIAT : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T09:09:41Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T09:09:41Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-26
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2023-10-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T09:09:41Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b TRANSL PSYCHIAT : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21