001     1024841
005     20250203103502.0
024 7 _ |a 10.1002/smll.202302387
|2 doi
024 7 _ |a 1613-6810
|2 ISSN
024 7 _ |a 1613-6829
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02507
|2 datacite_doi
024 7 _ |a 37231567
|2 pmid
024 7 _ |a WOS:000994675900001
|2 WOS
037 _ _ |a FZJ-2024-02507
082 _ _ |a 620
100 1 _ |a Lv, Hua
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Large‐Area Synthesis of Ferromagnetic Fe 5− x GeTe 2 /Graphene van der Waals Heterostructures with Curie Temperature above Room Temperature
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712674215_18044
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Van der Waals (vdW) heterostructures combining layered ferromagnets and other 2D crystals are promising building blocks for the realization of ultracompact devices with integrated magnetic, electronic, and optical functionalities. Their implementation in various technologies depends strongly on the development of a bottom-up scalable synthesis approach allowing for realizing highly uniform heterostructures with well-defined interfaces between different 2D-layered materials. It is also required that each material component of the heterostructure remains functional, which ideally includes ferromagnetic order above room temperature for 2D ferromagnets. Here, it is demonstrated that the large-area growth of Fe5−xGeTe2/graphene heterostructures is achieved by vdW epitaxy of Fe5−xGeTe2 on epitaxial graphene. Structural characterization confirms the realization of a continuous vdW heterostructure film with a sharp interface between Fe5−xGeTe2 and graphene. Magnetic and transport studies reveal that the ferromagnetic order persists well above 300 K with a perpendicular magnetic anisotropy. In addition, epitaxial graphene on SiC(0001) continues to exhibit a high electronic quality. These results represent an important advance beyond nonscalable flake exfoliation and stacking methods, thus marking a crucial step toward the implementation of ferromagnetic 2D materials in practical applications.
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a da Silva, Alessandra
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Figueroa, Adriana I.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Guillemard, Charles
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Aguirre, Iván Fernández
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Camosi, Lorenzo
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Aballe, Lucia
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Valvidares, Manuel
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Valenzuela, Sergio O.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Schubert, Jürgen
|0 P:(DE-Juel1)128631
|b 9
|u fzj
700 1 _ |a Schmidbauer, Martin
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Herfort, Jens
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Hanke, Michael
|0 P:(DE-Juel1)177087
|b 12
|u fzj
700 1 _ |a Trampert, Achim
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Engel-Herbert, Roman
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Ramsteiner, Manfred
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Lopes, Joao Marcelo J.
|0 P:(DE-HGF)0
|b 16
773 _ _ |a 10.1002/smll.202302387
|g Vol. 19, no. 39, p. 2302387
|0 PERI:(DE-600)2168935-0
|n 39
|p 2302387
|t Small
|v 19
|y 2023
|x 1613-6810
856 4 _ |u https://juser.fz-juelich.de/record/1024841/files/Small%20-%202023%20-%20Lv%20-%20Large%E2%80%90Area%20Synthesis%20of%20Ferromagnetic%20Fe5%20xGeTe2%20Graphene%20van%20der%20Waals%20Heterostructures%20with%20Curie.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1024841/files/Small%20-%202023%20-%20Lv%20-%20Large%E2%80%90Area%20Synthesis%20of%20Ferromagnetic%20Fe5%20xGeTe2%20Graphene%20van%20der%20Waals%20Heterostructures%20with%20Curie.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1024841/files/Small%20-%202023%20-%20Lv%20-%20Large%E2%80%90Area%20Synthesis%20of%20Ferromagnetic%20Fe5%20xGeTe2%20Graphene%20van%20der%20Waals%20Heterostructures%20with%20Curie.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1024841/files/Small%20-%202023%20-%20Lv%20-%20Large%E2%80%90Area%20Synthesis%20of%20Ferromagnetic%20Fe5%20xGeTe2%20Graphene%20van%20der%20Waals%20Heterostructures%20with%20Curie.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/1024841/files/Small%20-%202023%20-%20Lv%20-%20Large%E2%80%90Area%20Synthesis%20of%20Ferromagnetic%20Fe5%20xGeTe2%20Graphene%20van%20der%20Waals%20Heterostructures%20with%20Curie.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1024841
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V, 10117 Berlin, Germany E-mail: lv@pdi-berlin.de
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)128631
910 1 _ |a JARA-Fundamentals of Future Information Technology, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
|0 I:(DE-HGF)0
|b 9
|6 P:(DE-Juel1)128631
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)177087
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SMALL : 2022
|d 2023-10-25
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-25
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b SMALL : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a I:(DE-Juel1)PGI-9-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21