001     1024843
005     20250204113831.0
024 7 _ |a 10.1002/hbm.26632
|2 doi
024 7 _ |a 1065-9471
|2 ISSN
024 7 _ |a 1097-0193
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02509
|2 datacite_doi
024 7 _ |a 38379519
|2 pmid
024 7 _ |a WOS:001173400200001
|2 WOS
037 _ _ |a FZJ-2024-02509
082 _ _ |a 610
100 1 _ |a Kalc, Polona
|0 P:(DE-HGF)0
|b 0
245 _ _ |a BrainAGE : Revisited and reframed machine learning workflow
260 _ _ |a New York, NY
|c 2024
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712675736_18041
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Since the introduction of the BrainAGE method, novel machine learning methods for brain age prediction have continued to emerge. The idea of estimating the chronological age from magnetic resonance images proved to be an interesting field of research due to the relative simplicity of its interpretation and its potential use as a biomarker of brain health. We revised our previous BrainAGE approach, originally utilising relevance vector regression (RVR), and substituted it with Gaussian process regression (GPR), which enables more stable processing of larger datasets, such as the UK Biobank (UKB). In addition, we extended the global BrainAGE approach to regional BrainAGE, providing spatially specific scores for five brain lobes per hemisphere. We tested the performance of the new algorithms under several different conditions and investigated their validity on the ADNI and schizophrenia samples, as well as on a synthetic dataset of neocortical thinning. The results show an improved performance of the reframed global model on the UKB sample with a mean absolute error (MAE) of less than 2 years and a significant difference in BrainAGE between healthy participants and patients with Alzheimer's disease and schizophrenia. Moreover, the workings of the algorithm show meaningful effects for a simulated neocortical atrophy dataset. The regional BrainAGE model performed well on two clinical samples, showing disease-specific patterns for different levels of impairment. The results demonstrate that the new improved algorithms provide reliable and valid brain age estimations.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Dahnke, Robert
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 2
|u fzj
700 1 _ |a Gaser, Christian
|0 P:(DE-HGF)0
|b 3
|e Corresponding author
773 _ _ |a 10.1002/hbm.26632
|g Vol. 45, no. 3, p. e26632
|0 PERI:(DE-600)1492703-2
|n 3
|p e26632
|t Human brain mapping
|v 45
|y 2024
|x 1065-9471
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024843/files/Human%20Brain%20Mapping%20-%202024%20-%20Kalc%20-%20BrainAGE%20Revisited%20and%20reframed%20machine%20learning%20workflow.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024843/files/Human%20Brain%20Mapping%20-%202024%20-%20Kalc%20-%20BrainAGE%20Revisited%20and%20reframed%20machine%20learning%20workflow.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024843/files/Human%20Brain%20Mapping%20-%202024%20-%20Kalc%20-%20BrainAGE%20Revisited%20and%20reframed%20machine%20learning%20workflow.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024843/files/Human%20Brain%20Mapping%20-%202024%20-%20Kalc%20-%20BrainAGE%20Revisited%20and%20reframed%20machine%20learning%20workflow.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024843/files/Human%20Brain%20Mapping%20-%202024%20-%20Kalc%20-%20BrainAGE%20Revisited%20and%20reframed%20machine%20learning%20workflow.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024843
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131684
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 2
|6 P:(DE-Juel1)131684
910 1 _ |a Christian Gaser, Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, DE, Germany. Email: christian.gaser@uni-jena.de
|0 I:(DE-HGF)0
|b 3
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2024
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-08-25
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-08-25
|w ger
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-19
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:07:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:07:28Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:07:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-19
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-19
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21