001024846 001__ 1024846
001024846 005__ 20250204113831.0
001024846 0247_ $$2doi$$a10.1016/j.neuroimage.2024.120595
001024846 0247_ $$2ISSN$$a1053-8119
001024846 0247_ $$2ISSN$$a1095-9572
001024846 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02512
001024846 0247_ $$2pmid$$a38554782
001024846 0247_ $$2WOS$$aWOS:001218479400001
001024846 037__ $$aFZJ-2024-02512
001024846 082__ $$a610
001024846 1001_ $$0P:(DE-HGF)0$$aPark, Yeongjun$$b0
001024846 245__ $$aGAN-MAT: Generative adversarial network-based microstructural profile covariance analysis toolbox
001024846 260__ $$aOrlando, Fla.$$bAcademic Press$$c2024
001024846 3367_ $$2DRIVER$$aarticle
001024846 3367_ $$2DataCite$$aOutput Types/Journal article
001024846 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712721821_14826
001024846 3367_ $$2BibTeX$$aARTICLE
001024846 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024846 3367_ $$00$$2EndNote$$aJournal Article
001024846 520__ $$aMultimodal magnetic resonance imaging (MRI) provides complementary information for investigating brain structure and function; for example, an in vivo microstructure-sensitive proxy can be estimated using the ratio between T1- and T2-weighted structural MRI. However, acquiring multiple imaging modalities is challenging in patients with inattentive disorders. In this study, we proposed a comprehensive framework to provide multiple imaging features related to the brain microstructure using only T1-weighted MRI. Our toolbox consists of (i) synthesizing T2-weighted MRI from T1-weighted MRI using a conditional generative adversarial network; (ii) estimating microstructural features, including intracortical covariance and moment features of cortical layer-wise microstructural profiles; and (iii) generating a microstructural gradient, which is a low-dimensional representation of the intracortical microstructure profile. We trained and tested our toolbox using T1- and T2-weighted MRI scans of 1,104 healthy young adults obtained from the Human Connectome Project database. We found that the synthesized T2-weighted MRI was very similar to the actual image and that the synthesized data successfully reproduced the microstructural features. The toolbox was validated using an independent dataset containing healthy controls and patients with episodic migraine as well as the atypical developmental condition of autism spectrum disorder. Our toolbox may provide a new paradigm for analyzing multimodal structural MRI in the neuroscience community.
001024846 536__ $$0G:(DE-HGF)POF4-5254$$a5254 - Neuroscientific Data Analytics and AI (POF4-525)$$cPOF4-525$$fPOF IV$$x0
001024846 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x1
001024846 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024846 7001_ $$0P:(DE-HGF)0$$aLee, Mi Ji$$b1
001024846 7001_ $$0P:(DE-HGF)0$$aYoo, Seulki$$b2
001024846 7001_ $$0P:(DE-HGF)0$$aKim, Chae Yeon$$b3
001024846 7001_ $$0P:(DE-HGF)0$$aNamgung, Jong Young$$b4
001024846 7001_ $$0P:(DE-HGF)0$$aPark, Yunseo$$b5
001024846 7001_ $$0P:(DE-HGF)0$$aPark, Hyunjin$$b6
001024846 7001_ $$0P:(DE-HGF)0$$aLee, Eun-Chong$$b7
001024846 7001_ $$0P:(DE-HGF)0$$aYoon, Yeo Dong$$b8
001024846 7001_ $$0P:(DE-Juel1)187055$$aPaquola, Casey$$b9$$ufzj
001024846 7001_ $$0P:(DE-HGF)0$$aBernhardt, Boris C.$$b10
001024846 7001_ $$0P:(DE-HGF)0$$aPark, Bo-yong$$b11$$eCorresponding author
001024846 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2024.120595$$gVol. 291, p. 120595 -$$p120595 -$$tNeuroImage$$v291$$x1053-8119$$y2024
001024846 8564_ $$uhttps://juser.fz-juelich.de/record/1024846/files/1-s2.0-S1053811924000909-main.pdf$$yOpenAccess
001024846 8564_ $$uhttps://juser.fz-juelich.de/record/1024846/files/1-s2.0-S1053811924000909-main.gif?subformat=icon$$xicon$$yOpenAccess
001024846 8564_ $$uhttps://juser.fz-juelich.de/record/1024846/files/1-s2.0-S1053811924000909-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024846 8564_ $$uhttps://juser.fz-juelich.de/record/1024846/files/1-s2.0-S1053811924000909-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024846 8564_ $$uhttps://juser.fz-juelich.de/record/1024846/files/1-s2.0-S1053811924000909-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024846 909CO $$ooai:juser.fz-juelich.de:1024846$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001024846 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187055$$aForschungszentrum Jülich$$b9$$kFZJ
001024846 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Data Science, Inha University, Incheon, South Korea. boyong.park@inha.ac.kr$$b11
001024846 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5254$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
001024846 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1
001024846 9141_ $$y2024
001024846 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21
001024846 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21
001024846 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001024846 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:47:40Z
001024846 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:47:40Z
001024846 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21
001024846 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-21
001024846 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024846 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-21
001024846 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:47:40Z
001024846 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-16$$wger
001024846 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2022$$d2024-12-16
001024846 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
001024846 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
001024846 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
001024846 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
001024846 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
001024846 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-16
001024846 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-16
001024846 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
001024846 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2022$$d2024-12-16
001024846 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
001024846 980__ $$ajournal
001024846 980__ $$aVDB
001024846 980__ $$aUNRESTRICTED
001024846 980__ $$aI:(DE-Juel1)INM-7-20090406
001024846 9801_ $$aFullTexts