001     1024846
005     20250204113831.0
024 7 _ |a 10.1016/j.neuroimage.2024.120595
|2 doi
024 7 _ |a 1053-8119
|2 ISSN
024 7 _ |a 1095-9572
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02512
|2 datacite_doi
024 7 _ |a 38554782
|2 pmid
024 7 _ |a WOS:001218479400001
|2 WOS
037 _ _ |a FZJ-2024-02512
082 _ _ |a 610
100 1 _ |a Park, Yeongjun
|0 P:(DE-HGF)0
|b 0
245 _ _ |a GAN-MAT: Generative adversarial network-based microstructural profile covariance analysis toolbox
260 _ _ |a Orlando, Fla.
|c 2024
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712721821_14826
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Multimodal magnetic resonance imaging (MRI) provides complementary information for investigating brain structure and function; for example, an in vivo microstructure-sensitive proxy can be estimated using the ratio between T1- and T2-weighted structural MRI. However, acquiring multiple imaging modalities is challenging in patients with inattentive disorders. In this study, we proposed a comprehensive framework to provide multiple imaging features related to the brain microstructure using only T1-weighted MRI. Our toolbox consists of (i) synthesizing T2-weighted MRI from T1-weighted MRI using a conditional generative adversarial network; (ii) estimating microstructural features, including intracortical covariance and moment features of cortical layer-wise microstructural profiles; and (iii) generating a microstructural gradient, which is a low-dimensional representation of the intracortical microstructure profile. We trained and tested our toolbox using T1- and T2-weighted MRI scans of 1,104 healthy young adults obtained from the Human Connectome Project database. We found that the synthesized T2-weighted MRI was very similar to the actual image and that the synthesized data successfully reproduced the microstructural features. The toolbox was validated using an independent dataset containing healthy controls and patients with episodic migraine as well as the atypical developmental condition of autism spectrum disorder. Our toolbox may provide a new paradigm for analyzing multimodal structural MRI in the neuroscience community.
536 _ _ |a 5254 - Neuroscientific Data Analytics and AI (POF4-525)
|0 G:(DE-HGF)POF4-5254
|c POF4-525
|f POF IV
|x 0
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Lee, Mi Ji
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Yoo, Seulki
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kim, Chae Yeon
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Namgung, Jong Young
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Park, Yunseo
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Park, Hyunjin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Lee, Eun-Chong
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Yoon, Yeo Dong
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Paquola, Casey
|0 P:(DE-Juel1)187055
|b 9
|u fzj
700 1 _ |a Bernhardt, Boris C.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Park, Bo-yong
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
773 _ _ |a 10.1016/j.neuroimage.2024.120595
|g Vol. 291, p. 120595 -
|0 PERI:(DE-600)1471418-8
|p 120595 -
|t NeuroImage
|v 291
|y 2024
|x 1053-8119
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024846/files/1-s2.0-S1053811924000909-main.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024846/files/1-s2.0-S1053811924000909-main.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024846/files/1-s2.0-S1053811924000909-main.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024846/files/1-s2.0-S1053811924000909-main.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024846/files/1-s2.0-S1053811924000909-main.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024846
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)187055
910 1 _ |a Department of Data Science, Inha University, Incheon, South Korea. boyong.park@inha.ac.kr
|0 I:(DE-HGF)0
|b 11
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5254
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 1
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2023-10-21
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:47:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:47:40Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-21
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-21
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:47:40Z
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-16
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROIMAGE : 2022
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROIMAGE : 2022
|d 2024-12-16
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21