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A B S T R A C T   

Multimodal magnetic resonance imaging (MRI) provides complementary information for investigating brain 
structure and function; for example, an in vivo microstructure-sensitive proxy can be estimated using the ratio 
between T1- and T2-weighted structural MRI. However, acquiring multiple imaging modalities is challenging in 
patients with inattentive disorders. In this study, we proposed a comprehensive framework to provide multiple 
imaging features related to the brain microstructure using only T1-weighted MRI. Our toolbox consists of (i) 
synthesizing T2-weighted MRI from T1-weighted MRI using a conditional generative adversarial network; (ii) 
estimating microstructural features, including intracortical covariance and moment features of cortical layer- 
wise microstructural profiles; and (iii) generating a microstructural gradient, which is a low-dimensional rep
resentation of the intracortical microstructure profile. We trained and tested our toolbox using T1- and T2- 
weighted MRI scans of 1,104 healthy young adults obtained from the Human Connectome Project database. 
We found that the synthesized T2-weighted MRI was very similar to the actual image and that the synthesized 
data successfully reproduced the microstructural features. The toolbox was validated using an independent 
dataset containing healthy controls and patients with episodic migraine as well as the atypical developmental 
condition of autism spectrum disorder. Our toolbox may provide a new paradigm for analyzing multimodal 
structural MRI in the neuroscience community and is openly accessible at https://github.com/CAMIN-neuro/ 
GAN-MAT.   

1. Introduction 

Multimodal magnetic resonance imaging (MRI) enables the investi
gation of brain structure and function and their relationships in vivo. 
Using structural MRI of T1-weighted (T1w) and T2-weighted (T2w) 
images, we can assess the anatomical features of the brain, such as 
cortical thickness, curvature, and volume. Both T1w and T2w data 
elucidate brain structures, but the image contrast is a major difference. 

In T1w MRI, the white matter is bright, and the gray matter is dark, 
whereas T2w imaging shows the opposite intensity patterns. This is a 
consequence of the different MRI parameters. For example, in T1w, the 
repetition time (TR), which is the time between successive pulse se
quences applied to the same slice, and the echo time (TE), which is the 
time from the center of the radio-frequency pulse to the center of the 
echo, were shorter than those in T2w MRI. A short TR leads to a strong 
T1 weighting, whereas a long TE results in a strong T2 weighting. 
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Indeed, T1 and T2 properties are heterogeneous across different tissue 
types according to the amount of available free water, yielding different 
image contrasts (Stanisz et al., 2005). 

In addition to brain morphology, we can assess microstructural in
formation of the brain using T1w and T2w MRI without obtaining 
cytoarchitecture data. An approximation of the brain microstructure can 
be estimated using a microstructure-sensitive proxy, which is calculated 
based on the ratio between T1w and T2w imaging contrasts (Glasser 
et al., 2014; Glasser and van Essen, 2011), enabling us to investigate the 
cortical microstructure in vivo. A recent study suggested a method for 
analyzing the interregional relations of the brain microstructure 
(Paquola et al., 2019b) by calculating cortical layer-wise microstructural 
profiles among different brain regions. By applying dimensionality 
reduction techniques, they generated a low-dimensional representation 
of the cortical microstructure, referred to as a microstructural gradient. 
The microstructural gradient represents a well-known hierarchical 
cortical model of the sensory-fugal axis, which expands from the sensory 
regions to the limbic cortices (Mesulam, 1998; Paquola et al., 2019b). 
This feature has been widely adopted to assess the microstructural 
profiles of the brain in healthy adults as well as during adolescence 
(Paquola et al., 2019b; Whitaker et al., 2016). Indeed, the microstruc
tural gradient linked the macroscale connectome to microscale 
cell-type-specific expression during adolescent development, suggesting 
the validity of this feature for investigating multiscale properties of the 
brain (Paquola et al., 2019a). However, obtaining microstructural fea
tures is challenging because it requires acquiring both T1w and T2w 
MRI, which is time-consuming and costly. Moreover, obtaining multiple 
imaging data within a restricted time may not be possible for individuals 
with psychiatric disorders showing inattentive behaviors, such as autism 
spectrum disorder and attention-deficit/hyperactivity disorder. Because 
of these issues, many open databases and clinics typically provide only 
T1w MRI, not T2w, for research (Di Martino et al., 2017, 2014; Milham 
et al., 2012; Nooner et al., 2012). One approach for mitigating this 
limitation is image synthesis. If we can synthesize T2w MRI images from 
T1w images, we can generate a microstructural gradient using only T1w 
MRI images with reduced time and cost. 

Image synthesis has been conducted in many prior works using 
natural images and texts (Huang et al., 2018; Sangkloy et al., 2016; 
Thies et al., 2019; Wang et al., 2017; Zhang et al., 2017), and transferred 
to study medical imaging data (Chira et al., 2022; Nie et al., 2018; 
Osokin et al., 2017; Shin et al., 2018). For example, one study generated 
high-resolution images from low-resolution data using deep variational 
autoencoders (VAE) (Chira et al., 2022), and another work generated 
brain MRI with tumors using a generative adversarial network (GAN) 
(Huang et al., 2021; Osokin et al., 2017). Additionally, one study syn
thesized multiple imaging modalities using GAN, such as computed to
mography from MRI, 7T MRI from 3T MRI, and T2w from T1w MRI (Nie 
et al., 2018). GAN is a deep learning model synthesizing new imaging 
data consisting of a generator and discriminator (Goodfellow et al., 
2014). The GAN model generates data by adversarially training the 
generator and the discriminator. The generator makes fake images as 
similar as possible to the original image, and the discriminator distin
guishes whether the input images are fake or real. Specifically, the 
generator is trained to make the discriminator fail to classify between 
fake and real data, and the discriminator is trained to distinguish be
tween real and fake images as accurately as possible. A recent study 
introduced a conditional GAN by adding specific conditions to the va
nilla GAN (Nie et al., 2018). One representative model of the conditional 
GAN is pix2pix, which processes paired data of input and label images 
(Isola et al., 2016), and another model, called CycleGAN, allows the 
unpaired set of images (Zhu et al., 2017). 

Several studies have proposed models for synthesizing T2w MRI 
images from T1w MRI images (Kawahara and Nagata, 2021; Yang et al., 
2020; Zhao et al., 2021). However, these studies are limited to yielding 
two-dimensional (2D) MRI data or focus on improving the accuracy of 
image synthesis without providing a comprehensive framework to study 

the brain microstructure in vivo. In this study, we propose a toolbox 
consolidating (i) the synthesis of T2w MRI images from T1w images 
using a 3D-based conditional GAN model, (ii) the calculation of a 
microstructure-sensitive proxy based on the T1w/T2w ratio, and (iii) the 
generation of ready-to-use microstructural features (Fig. 1A). 

2. Methods 

2.1. Imaging data 

We studied structural MRI data from three independent sites: (i) 
Human Connectome Project (HCP) (http://www.humanconnectome. 
org/) (Van Essen et al., 2013), (ii) Samsung Medical Center (SMC), 
and (iii) Autism Brain Imaging Data Exchange II initiative (ABIDE-II; 
https://fcon_1000.projects.nitrc.org/indi/abide) (Di Martino et al., 
2017). The GAN model was constructed using healthy young adults from 
the HCP dataset, and its generalizability was validated using the healthy 
and diseased populations from the SMC dataset. Finally, we applied the 
model to the ABIDE-II dataset to confirm its generalizability to both 
typical and atypical neurodevelopmental conditions. The detailed image 
acquisition parameters are as follows: 

i) HCP: We obtained T1w and T2w data of 1104 healthy young adults 
(mean ± standard deviation (SD) age = 28.8 ± 3.7 years; 54.9 % fe
male) from the HCP database. The T1w MRI was performed using a 3D 
magnetization-prepared rapid acquisition gradient echo (MPRAGE) 
sequence (TR = 2400 ms; TE = 2.14 ms; field of view (FOV) = 224 × 224 
mm2; voxel size = 0.7 mm isotropic; number of slices = 256), and the 
T2w MRI was performed using a 3D T2-SPACE sequence (TR = 3200 ms; 
TE = 565 ms; FOV = 224 × 224 mm2, voxel size = 0.7 mm isotropic, 
number of slices = 256). The imaging and phenotypic data are publicly 
available and anonymized. The Washington University Institutional 
Review Board (IRB) previously approved the participant recruitment 
procedures and informed consent forms, including consent to share de- 
identified data, as part of the HCP. 

ii) SMC: From the SMC site, we obtained T1w and T2w data of 43 
healthy controls (mean ± SD age = 35.1 ± 7.6 years; 76.7 % female) and 
58 individuals with migraine (mean ± SD age = 34.3 ± 8.2 years; 75.8 
% female). The T1w MRI was scanned turbo field echo (TFE) sequence 
(TR = 8.2 ms; TE = 3.8 ms; field of view (FOV) = 256 × 256 mm2; voxel 
size = 1.0 mm isotropic; and the number of slices = 180), and the T2w 
MRI was scanned turbo spin echo (TSE) sequence (TR = 3000 ms; TE =
280 ms; FOV = 256 × 256 mm2, voxel size = 1.0 mm isotropic, and the 
number of slices = 180). The SMC IRB approved this study, and all 
participants provided written informed consent. This study is part of an 
ongoing longitudinal project registered at ClinicalTrials.gov (Identifier: 
NCT03487978). 

iii) ABIDE-II: We obtained T1w data of 535 neurotypical controls 
(mean ± SD age = 14.8 ± 9.3 years; 31.0 % female) and 470 individuals 
with autism (mean ± SD age = 14.8 ± 9.2 years; 15.1 % female) from 17 
different sites of the ABIDE-II database. As the database did not provide 
T2w MRI data, we only studied T1w data. The acquisition parameters of 
each site are available elsewhere (https://fcon_1000.projects.nitrc.org/ 
indi/abide). The data collection was performed in accordance with the 
local IRB guidelines. Following the Health Insurance Portability and 
Accountability Act (HIPAA) guidelines and 1000 Functional Con
nectomes Project/INDI protocols, all ABIDE datasets were fully anony
mized, with no protected health information included. 

2.2. MRI data preprocessing 

i) HCP: The HCP data were preprocessed using the minimal pre
processing pipelines for HCP (Glasser et al., 2013). The T1w and T2w 
data were corrected for gradient nonlinearity and b0 distortions and 
co-registered using a rigid-body transformation. Bias field correction 
was performed based on the inverse intensities from T1- and 
T2-weighting. The processed data were nonlinearly registered to the 
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standard Montreal Neurological Institute (MNI152) space. White and 
pial surfaces were generated by following the boundaries between the 
different tissues (Dale et al., 1999; Fischl et al., 1999a, b). The 
mid-thickness surface was generated by averaging the white and pial 
surfaces and was used to generate the inflated surface. The spherical 
surface was registered to the Conte69 template using MSMAll (Glasser 
et al., 2016). 

ii) SMC: The SMC data were preprocessed using the Fusion of Neu
roimaging Preprocessing (FuNP) pipeline (Park et al., 2019) that inte
grated AFNI, FSL, FreeSurfer, and ANTs (Avants et al., 2011; Cox, 1996; 
Fischl, 2012; Glasser et al., 2013; Jenkinson et al., 2012). Similar to the 
HCP pipeline, gradient nonlinearity and b0 distortion correction, non
brain tissue removal, and intensity normalization were performed. 
White matter, pial, and mid-thickness surfaces were generated, and the 
inflated surface was spherically registered to the Conte69 template with 
164k vertices and down-sampled to a 32k vertex mesh. 

iii) ABIDE-II: T1w data from the ABIDE-II database were pre
processed using FreeSurfer (Dale et al., 1999; Fischl, 2012; Fischl et al., 
2001; Fischl et al. 1999a, b; Ségonne et al., 2007), which included 
gradient non-uniformity correction, non-brain tissue removal, intensity 
normalization, and tissue segmentation. White and pial surfaces were 
generated, and topology correction, inflation, and spherical registration 
to the fsaverage template were performed. 

2.3. T2w image synthesis using T1w MRI 

Using the HCP data, we constructed a conditional GAN-based model 
to synthesize T2w images from T1w images. The participants were 
randomly divided into training (n = 752), validation (n = 187), and test 
(n = 165) datasets. The original 3D T1w data were registered onto a 0.8 
mm isotropic MNI152 standard space with a matrix size of 227 × 272 ×
227 using GNU parallel (Tange, 2018). After the tissue segmentation 
into gray matter, white matter, and cerebrospinal fluid using FAST 
(Zhang et al., 2001), normalization was applied to each tissue type and 
combined across the channels. The images were resized to 256 × 256 ×
256 using cropping and zero-padding. The conditional GAN was based 
on the pix2pix, which was developed for 2D data (Isola et al., 2016). We 
adjusted the architecture to process the 3D T1w data (Fig. 1B). The 
generator was based on the U-Net architecture, which has skip con
nections linking the layers between the encoder and decoder (Isola et al., 
2016). The data were processed using seven 3D convolutional layers 
with a leaky rectified linear unit (LeakyReLU) activation function. At the 
end of the encoding phase, the latent feature was convoluted, and 512 
units were obtained. Three deconvolutions with ReLU, batch normali
zation, and dropout with a ratio of 0.5 were applied, and four additional 
deconvolutions with ReLU and batch normalization were conducted. 
Finally, deconvolution and a hyperbolic tangent were applied, and 256 
× 256 × 256 output data were generated. The skip connection was 
linked to the corresponding decoding layer at each encoding layer. The 
discriminator was constructed using PatchGAN (Isola et al., 2016). It 
discriminates images in units of patches; thus, it is faster than conven
tional discriminators that distinguish entire images simultaneously. The 
256 × 256 × 256 input matrix was passed through five convolution 
layers, and finally, a sigmoid function was applied. To optimize the 
hyperparameters, we adopted the Adam optimizer, which is a stochastic 

gradient descent method. The objective function was defined as follows: 

argmin
G

max
D

Ex, y[logD(x, y)] + Ex[log(1 − D(x, G(x)))]
+100 × Ex, y[‖ y − G(x)‖1]

(1)  

where G and D denote the generator and discriminator, and x and y 
denote the input and label images, respectively. The objective function 
comprises three terms: the first determines whether a label image is fake 
or real. The second term is an adversarial term in which the discrimi
nator receives a fake image generated from the generator. The generator 
is trained to create fake images to enable the discriminator to classify the 
fake image as real, and the discriminator is trained to accurately 
distinguish between fake and real images. The last term is the regula
rization term for training stability. We assessed the performance of the 
model by calculating the mean absolute error (MAE), peak signal-to- 
noise ratio (PSNR), and structural similarity index measure (SSIM) be
tween the actual and synthesized T2w data after normalizing the image 
intensities between zero and one. In addition to the global performance, 
we assessed the tissue type-specific synthesis performance of gray mat
ter, white matter, and cerebrospinal fluid. Regional performance was 
assessed in the frontal, temporal, parietal, occipital, insular, and limbic 
cortices, and subcortical structures defined using the Brainnetome atlas 
(Fan et al., 2016). To evaluate the validity of the model hyper
parameters, we assessed the synthesis performance by changing specific 
hyperparameters: (i) depth of the model = 6, 7, and 8; (ii) learning rate 
= 2e-04 and 1e-05; and (iii) number of kernels = 16, 32, and 64. 

2.4. Microstructural profile of the brain 

We generated a microstructure-sensitive proxy based on the ratio 
between the actual T1w and synthesized T2w contrasts (Glasser et al., 
2014; Glasser and van Essen, 2011) (Fig. 1C). To calculate the intra
cortical microstructure profiles, we first generated 14 equivolumetric 
surfaces within the cortex between the inner white and outer pial sur
faces and then sampled the T1w/T2w intensities along these surfaces 
(Paquola et al., 2019b). The statistical moment features (mean, SD, 
skewness, and kurtosis) were calculated from the intensity profiles 
(Paquola et al., 2019a; Schleicher et al., 2009). The mean and SD indi
cate the overall distribution of the intracortical microstructure, skew
ness represents shifts in intensity values toward the supragranular layers 
(i.e., positive) or flat distribution (i.e., negative), and kurtosis indicates 
whether the tails of the intensity distribution contain extreme values. In 
addition to the moment features, we constructed a microstructural 
profile covariance (MPC) matrix by calculating the linear correlations of 
cortical depth-dependent T1w/T2w intensity profiles between different 
cortical regions defined using the Schaefer atlas with 300 parcels 
(Schaefer et al., 2018), while controlling for the average whole-cortex 
intensity profile (Paquola et al., 2019b). The matrix was thresholded 
at zero and log-transformed (Coifman and Lafon, 2006). We generated a 
microstructural gradient from the MPC matrix, which is a 
low-dimensional representation of connectome organization that ex
plains the spatial variation in connectivity (Margulies et al., 2016; 
Paquola et al., 2019b) using the BrainSpace toolbox (https://github. 
com/MICA-MNI/BrainSpace) (Vos de Wael et al., 2020). Specifically, 
we applied diffusion map embedding after applying a normalized angle 

Fig. 1. A proposed toolbox synthesizing T2w MRI from T1w MRI and estimating brain microstructural features. (A) Shown is the schema of our toolbox, the 
Generative Adversarial Network-based Microstructural Profile Covariance Analysis Toolbox (GAN-MAT). It contains a conditional GAN synthesizing T2w from T1w 
MRI and calculates the ratio between T1w and T2w intensities to obtain the microstructure-sensitive proxy. The moment features are calculated from the synthesized 
microstructure data. The microstructural profile covariance (MPC) matrix is constructed based on the linear correlations of intracortical T1w/T2w intensity profiles 
between different brain regions, and microstructural gradients are generated using nonlinear dimensionality reduction techniques. (B) The architectures of the 
generator (top) and discriminator (bottom) are shown. (C) The schema for generating the microstructural gradient is shown. After generating 14 equivolumetric 
surfaces (left), we calculate linear correlations of cortical depth-dependent T1w/T2w intensity profiles between different cortical regions to make an MPC matrix (top 
middle). By applying dimensionality reduction techniques, we generate the microstructural gradient (top right). Additionally, four different moment features are 
calculated from the intracortical microstructural profiles (bottom right). (D) Shown is the organization of the input (left) and output (right) directories of a sample 
subject. Abbreviations: T1w, T1-weighted; T2w, T2-weighted; GAN, generative adversarial network; MRI, magnetic resonance imaging. 
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kernel to the group-averaged MPC matrix, leaving the top 10 % of ele
ments for each brain region (von Luxburg, 2007). Diffusion map 
embedding is a nonlinear dimensionality reduction technique that is 
robust to noise and computationally efficient compared with other 
nonlinear manifold learning techniques (Tenenbaum et al., 1995; von 
Luxburg, 2007). It is controlled by two parameters, α, and t, where α 
controls the influence of the density of the sampling points on the 
manifold (α = 0, maximal influence; α = 1, no influence), and t scales the 
eigenvalues of the diffusion operator. The parameters were set as α = 0.5 
and t = 0 to retain the global relations between data points in the 
embedded space following prior applications (Hong et al., 2019; Mar
gulies et al., 2016; Paquola et al., 2019b; Park et al., 2021; Vos de Wael 
et al., 2020). Individual gradients were estimated and aligned to the 
template gradient using Procrustes alignment (Langs et al., 2015; Vos de 
Wael et al., 2020). We evaluated the similarity between the actual and 
synthesized microstructural moments and gradient features based on 
linear correlations, where the significance of the correlation was 
assessed using 1000 spin permutation tests that accounted for spatial 
autocorrelation (Alexander-Bloch et al., 2018; Vos de Wael et al., 2020). 

2.5. Generalizability of the model using an independent dataset 

To assess the reliability and robustness of our toolbox, we applied the 
HCP-driven model to an independent SMC dataset containing healthy 
controls and individuals with migraine. We synthesized T2w from T1w 
and calculated the microstructure-sensitive proxy and relevant moment 
and gradient features. Performance was evaluated using the MAE, PSNR, 
and SSIM between the actual and synthesized T2w images and the linear 
correlations between the actual and synthesized microstructural 
features. 

2.6. Age prediction and sex classification 

We validated the similarity of the actual and synthesized micro
structural features by conducting (i) age prediction and (ii) sex classi
fication using the actual or synthesized microstructural gradients. After 
randomly dividing the subjects into the training and test datasets, we 
used the least absolute shrinkage and selection operator regression 
framework for age prediction, and logistic regression for classifying 
male and female subjects. Additionally, we assessed the validity of the 
synthesized T2w images by performing a sex classification task using 
image descriptors, referred to as the keypoints (https://github.com/3d 
sift-rank) (Chauvin et al., 2022, 2020). In brief, the keypoints of the 
T2w image of each subject were extracted using the 3D scale-invariant 
feature transform (SIFT)-rank algorithm (Chauvin et al., 2020), and 
the keypoints were matched using the k-nearest neighbor. After calcu
lating the pairwise image distances, sex classification was performed. 

2.7. Application to the developmental conditions 

We applied the toolbox to T1w MRI of neurotypical controls and 
individuals with autism obtained from the ABIDE-II database (Di Mar
tino et al., 2017) to synthesize T2w data. As the ABIDE-II database did 
not provide T2w MRI data, we stratified the synthesized microstructural 
gradient values according to four cortical hierarchical levels (idiotypic, 
unimodal association, heteromodal association, and paralimbic) 
(Mesulam, 1998) to assess whether the gradient followed a well-known 
sensory-fugal brain hierarchy (Paquola et al., 2019b). Additionally, we 
assessed between-group differences in the synthesized microstructural 
gradient values between the neurotypical controls and individuals with 
autism. The two-sample t-tests were conducted, and multiple compari
sons across the brain regions were corrected using FDR < 0.05. 

2.8. Sensitivity analyses 

i) Bootstrap analysis. We trained the GAN model using different 

training and validation datasets and synthesized T2w MRI images from 
the T1w data. We assessed the performance of the model by calculating 
the MAE, PSNR, and SSIM between the actual and synthesized T2w 
images, as well as the microstructure-sensitive proxy (T1w/T2w ratio) 
of the test dataset. The analysis was repeated ten times. 

ii) Two-dimensional model. Instead of the modified 3D pix2pix model, 
we evaluated the synthesis performance using the original 2D-based 
model. To this end, we sliced the 3D T1w images along each axis (x, 
y, and z). The original model consisted of one discriminator; however, 
we used three discriminators to distinguish the sliced images along each 
axis. Three synthesized images from the x-, y-, and z-axes were merged 
in the final stage to yield the 3D data. Model performance was assessed 
using the MAE, PSNR, and SSIM between the actual and synthesized 
T2w. 

iii) Synthesis of T1w/T2w ratio. In addition to synthesizing T2w MRI 
images from T1w, we trained the GAN to synthesize T1w/T2w directly. 
We tested both the 2D and 3D models and calculated the MAE, PSNR, 
and SSIM to assess the performance. 

iv) Evaluation using other models. In addition to the proposed model, 
we tested the synthesis performance using other deep learning models, 
such as VAE (Kingma and Welling, 2013), CycleGAN (Zhu et al., 2017), 
and latent diffusion model (LDM) (Rombach et al., 2021). The VAE is 
structured upon the autoencoder architecture. Unlike the vanilla 
autoencoder, VAE encodes input data as distributions instead of points, 
and the latent space has constraints such that the distributions returned 
by the encoder follow Gaussian distributions. Subsequently, the decoder 
generates output data similar to the input based on these distributions. 
Both the encoder and decoder consist of four convolution layers (with 
kernel size = 4, stride = 2, and zero-padding = 1), batch normalization, 
and ReLU activation function. The MAE is employed as the loss function, 
and the dimensions of the latent space are set to 256. The CycleGAN 
performs image-to-image translation tasks without requiring paired 
training data. It comprises two generators and two discriminators. The 
generators learn the mapping between two image domains to capture 
the target domain’s characteristics. The first discriminator distinguishes 
real images from generated images in the target domain, and the second 
discriminator discerns real from generated images in the source domain. 
Each generator consists of three convolution encoder layers, nine re
sidual blocks, and three deconvolution decoder layers. The encoder and 
decoder are composed of four convolution layers (kernel size = 4, stride 
= 2, and zero-padding = 1), instance normalization, and ReLU activa
tion function. Each residual block comprises a double convolution layer 
(kernel size = 3, stride = 1, and zero-padding = 1) and a dropout layer 
with a rate of 0.5. The architecture of each discriminator is the same as 
our model. The adversarial loss in each domain and cycle consistency 
loss with a weight of 10 is used. The LDM is a probabilistic model that 
generates images starting with random noise and gradually transforms 
them into realistic images through a diffusion process. Unlike standard 
diffusion models, the LDM applies the diffusion process to latent features 
rather than raw pixel values. The encoder is constructed as follows: one 
convolution layer, three downsample processes (consisting of two re
sidual blocks and one convolution layer), residual block, attention layer, 
residual block, and convolution layer. The decoder is the inverse of the 
encoder. The diffusion processing model comprises three encoder layers 
(attention layer, residual block, and downsample layer) and three 
decoder layers (attention layer, residual block, and upsample layer). 
While training, the encoder and decoder employ perceptual loss, 
adversarial loss, and Kullback-Leibler regularization in the latent space. 
MSE is used as the loss function to train the diffusion processing model. 

3. Results 

3.1. Organization of the toolbox 

The developed toolbox requires the input data to be organized in a 
specific format containing T1w data and several FreeSurfer output files 
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(Fig. 1D). The toolbox can be implemented using a single command 
“gan-mat -input_dir /INPUT/DATA/DIRECTORY -output_dir /OUTPUT/ 
DIRECTORY”. It then yields brain microstructural and intracortical 
moment features as well as the MPC matrix and its microstructural 
gradient, mapped onto 18 different parcellation schemes (Cruces et al., 
2022). 

3.2. Synthesis of T2w from T1w MRI 

We synthesized 3D T2w MRI images from T1w data using a modified 
pix2pix model. The hyperparameters were set to the model depth of 
eight, the learning rate 2e-04, and the number of kernels 64 (Supple
mentary Table 1). The trained model was applied to the holdout test 
dataset, and the actual and synthesized T2w images showed similar 
spatial patterns (mean ± SD MAE of the whole brain across individuals 
= 0.012 ± 0.001; PSNR = 28.32 ± 0.573; SSIM = 0.941 ± 0.004) when 
the image intensity of each subject was scaled between zero and one 
(Fig. 2A and Supplementary Table 2). The synthesis performance was 
slightly different among the tissue types, with the best performance 
observed in the white matter (white matter = 0.036 ± 0.005, gray 
matter = 0.068 ± 0.005, and cerebrospinal fluid = 0.197 ± 0.013 across 
individuals). We stratified the MAE, PSNR, and SSIM according to 
different lobes and subcortical structures. The subcortical structures 
showed the best performance for MAE and PSNR, and the insular cortex 
showed the highest performance for SSIM. On the other hand, the lowest 
performance was observed in the parietal lobe for MAE, temporal lobe 
for PSNR, and frontal lobe for SSIM. However, the differences between 
different lobes and subcortical structures were trivial (Fig. 2A). 

3.3. Synthesized brain microstructure 

The validity of the synthesized T2w images was evaluated by 
assessing the similarity between the actual and synthesized 
microstructure-sensitive proxies based on the T1w/T2w ratio (Fig. 2B). 
We observed a high similarity in the synthesized microstructure- 
sensitive proxy, where the mean ± SD MAE was 0.005 ± 0.001, PSNR 
was 24.23 ± 0.685, and SSIM was 0.937 ± 0.003 across individuals 
(Supplementary Table 2). Moreover, the generated microstructural 
gradient showed a well-known sensory-fugal hierarchy that radiated 
from sensory and motor areas with higher myelination toward hetero
modal associations and paralimbic regions with lower myelin content. 
The group-level correlations between the actual and synthesized 
microstructural gradients showed significant associations (r = 0.96, pspin 
< 0.001; Fig. 2B). Additionally, the individual-level correlations were 
comparable (mean ± SD correlation coefficient across individuals =
0.87 ± 0.02, pspin < 0.001). The similarity between the actual and 
synthesized moment features also showed high similarities (mean: r =
0.98, pspin < 0.001; SD: r = 0.94, pspin < 0.001; skewness: r = 0.96, pspin 
< 0.001; kurtosis: r = 0.93, pspin < 0.001; Fig. 2C). 

3.4. Validation of the model using an independent dataset 

The generalizability of the model was evaluated by applying it to an 
independent SMC dataset. The similarity between the actual and syn
thesized T2w images showed good results (mean ± SD MAE/PSNR/ 
SSIM across healthy controls = 0.021 ± 0.001 / 23.55 ± 0.489 / 0.895 
± 0.005; individuals with migraine = 0.022 ± 0.002 / 23.54 ± 0.546 / 
0.895 ± 0.008; Fig. 3A and Supplementary Table 3–4). The linear 
correlations were significant between the group-level actual and syn
thesized microstructural gradients (healthy controls: r = 0.96, pspin <

0.001, individuals with migraine: r = 0.97, pspin < 0.001; Fig. 3B) and 
moment features (healthy controls/individuals with migraine: mean =
0.57/0.52, SD = 0.77/0.79, skewness = 0.92/0.95, kurtosis = 0.87/ 
0.90; Fig. 3C-D). These results indicated that our toolbox can be used to 
investigate the microstructural profiles of both healthy controls and 
patients with neurological conditions. 

3.5. Age prediction and sex classification 

Using the actual or synthesized microstructural gradients, we per
formed age prediction and sex classification tasks. We found that the 
performance of the age prediction was similar when we used actual or 
synthesized microstructural gradients (r = 0.47, p = 0.001 for actual 
gradient; r = 0.46, p = 0.001 for synthesized gradient; Supplementary 
Fig. 1A). The sex classification results were also comparable (accuracy =
77.8 % for both actual and synthesized gradients; Supplementary 
Fig. 1B). In addition, sex classification performance using keypoints 
(Chauvin et al., 2022) were comparable between the actual (accuracy =
78.8 %) and synthesized T2w images (73.2 %), indicating that our 
synthesized T2w images may preserve the biological properties of the 
actual data. 

3.6. Application of the model to typical and atypical developmental 
conditions 

We applied our toolbox to data from neurotypical controls and in
dividuals with autism, which we obtained from the ABIDE II database 
(Di Martino et al., 2017). We estimated the MPC matrix and micro
structural gradients for each subject and averaged them to obtain 
group-representative data for the control and autism groups (Fig. 4A). 
The generated microstructural gradients exhibited a sensory-fugal axis 
in both groups. When we stratified the gradient values according to the 
four cortical hierarchical levels (Mesulam, 1998), a hierarchy along the 
cortex was observed, expanding from the lower-level idiotypic to the 
higher-order association and paralimbic areas (Fig. 4B). When we 
assessed between-group differences in the synthesized microstructural 
gradients between the control and autism groups, we found significant 
(FDR < 0.05) between-group differences in the microstructural gradient 
values in the superior temporal cortex and precuneus (Supplementary 
Fig. 2), which were consistent with previous studies (Carper et al., 
2017). Together, these results indicate that our toolbox can be gener
alized to independent datasets of typical and atypical developmental 
conditions. 

3.7. Sensitivity analyses 

i) Bootstrap analysis. We synthesized T2w data from T1w MRI images 
using randomly selected training and validation datasets to avoid 
subject-selection bias. The mean ± SD MAE/PSNR/SSIM between the 
actual and synthesized T2w of the test datasets across ten bootstraps was 
0.012 ± 0.0001 / 28.20 ± 0.183 / 0.921 ± 0.004 (Supplementary 
Fig. 3), and that of the T1w/T2w ratio was 0.005 ± 0.0001 / 24.25 ±
0.126 / 0.936 ± 0.0007, indicating robustness. 

ii) Two-dimensional model. The 2D-based model was trained instead 
of the modified 3D model. The mean ± SD MAE/PNSR/SSIM between 
the actual and synthesized T2w was 0.020 ± 0.002 / 25.03 ± 0.614 / 
0.844 ± 0.004 (Supplementary Fig. 4A and Supplementary Table 2). 
We quantitatively compared the performance between the 2D and 3D 
models by conducting a paired t-test using the MAE/PSNR/SSIM be
tween the two models. We found significant differences between the 2D 
and 3D models (MAE: t = − 251, p < 0.001; PSNR: t = 291, p < 0.001; 
SSIM: t = 646, p < 0.001), indicating that the 3D method performs better 
than the 2D method in synthesizing T2w. 

iii) Synthesis of T1w/T2w ratio. Instead of synthesizing T2w, we 
directly generated the T1w/T2w ratio from the T1w data. The 2D model 
showed mean ± SD MAE/PSNR/SSIM of 0.008 ± 0.001 / 24.24 ± 0.570 
/ 0.901 ± 0.020 (Supplementary Fig. 4A and Supplementary 
Table 2), and the 3D model showed 0.006 ± 0.001 / 24.98 ± 0.511 / 
0.928 ± 0.003 (Supplementary Fig. 4A and Supplementary Table 2). 
When we compared the performance between the 2D and 3D models, we 
found significant differences (t = − 18.8 and p < 0.001), indicating that 
the 3D method performs better than the 2D method not only for syn
thesizing T2w but also T1w/T2w ratio. Additionally, we compared the 
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performance of calculating the T1w/T2w ratio after synthesizing the 
T2w image and the method directly synthesizing the T1w/T2w ratio. We 
conducted a paired t-test of the correlation coefficients between the 
actual and synthesized microstructural gradients derived from two 
different methods. We found significant differences (t = 49.02 and p <
0.001) between the two approaches, indicating that calculating the 
T1w/T2w ratio using the synthesized T2w data is better than synthe
sizing the T1w/T2w ratio directly. 

iv) Evaluation using other models. We tested the performance of syn
thesizing T2w images from T1w data using other types of deep learning 
models. We found that our 3D-based model (mean ± SD MAE of the 
whole brain across individuals = 0.012 ± 0.001; PSNR = 28.32 ± 0.573; 
SSIM = 0.941 ± 0.004) outperformed VAE (MAE = 0.023 ± 0.005; 
PSNR = 24.45 ± 1.056; SSIM = 0.757 ± 0.039), CycleGAN (MAE =
0.024 ± 0.003; PSNR = 23.85 ± 0.772; SSIM = 0.771 ± 0.014), and 
LDM (MAE = 0.032 ± 0.003; PSNR = 25.95 ± 0.484; SSIM = 0.518 ±
0.053; Supplementary Table 2). Our model also showed good perfor
mance in synthesizing T1w/T2w ratio (Supplementary Table 2). When 
we evaluated the performance of the models applied to the independent 
SMC dataset, our model also showed the best results (Supplementary 
Table 3–4). 

4. Discussion 

The image synthesis approach benefits neuroimaging studies by 
generating multiple imaging modalities from a single modal image with 
reduced time and cost. In this study, we constructed and disseminated a 
toolbox to analyze the brain microstructure in vivo using only T1w MRI. 
Specifically, the toolbox synthesizes T2w from T1w MRI and calculates a 
microstructure-sensitive proxy to generate the MPC matrix, its gradient, 
and moment features. We observed a high correspondence between the 
actual and synthesized features, and multiple sensitivity analyses 
demonstrated the robustness of the toolbox. Our proposed framework 
may facilitate multimodal neuroimaging studies, particularly for 
studying brain microstructures using limited neuroimaging modalities. 

The concept of image synthesis was introduced in previous neuro
imaging studies. For example, one study used a conditional GAN to 
synthesize T1w from T2w images and T2w from T1w images based on 
the original pix2pix model (Kawahara and Nagata, 2021). Another study 
modified the model to process 3D data, in which each dimension was a 
sagittal, coronal, or axial slice (Zhao et al., 2021). Additionally, a con
ditional GAN was adopted to improve the quality of the registration and 
segmentation of brain images containing tumors (Yang et al., 2020). 
These studies focused on optimizing the distribution of the synthesized 
image to make it as similar as possible to an actual image. Thus, the aims 
of these studies were primarily to improve the synthesis accuracy and 
optimize the hyperparameters of the model. Contrastingly, our work 
aimed to provide the microstructural features of the brain that can be 
used in neuroscience and clinical studies to identify markers of specific 
psychiatric or neurological conditions. For example, the 
microstructure-sensitive proxy can be used to investigate alterations in 
brain network organization of Alzheimer’s disease, schizophrenia, epi
epsy, and multiple sclerosis (Bernhardt et al., 2018; Boaventura et al., 
2022; Ganzetti et al., 2015; Pelkmans et al., 2019; Yasuno et al., 2017), 
and we can assess behavioral and cognitive traits during typical and 
atypical development (Carper et al., 2017; Darki et al., 2021; Langensee 
et al., 2022). Moreover, microstructural features can be used to inves
tigate multiscale neural organization. The microstructural gradient 

describes macroscopic connectome organization and is associated with 
gene expression in brain cells (Paquola et al., 2019a; Royer et al., 2020). 
Inl summary, our study impacts clinical neuroscience by providing a 
consolidated framework for synthesizing T2w images from T1w MRI 
images and generating ready-to-use brain microstructural features. 

We demonstrated the reliability and robustness of our toolbox using 
multiple scenarios. First, we quantitatively tested four different models: 
(i) synthesis of T2w using a 3D GAN (ii) 2D GAN, (iii) synthesis of the 
T1w/T2w ratio using a 3D GAN, and (iv) 2D GAN. We found that the 
first model (3D–T2w synthesis) exhibited the best performance. The 
superior performance of the 3D model relative to that of the 2D model 
may be due to the quantity of information. The 2D model uses infor
mation on the brain anatomy of each axis (i.e., sagittal, coronal, and 
axial) for training; thus, it does not consider the geometric properties 
across different slices. Additionally, we found that synthesizing T2w 
images is better than directly creating a T1w/T2w ratio. A previous 
study suggested that the role of T2w images when calculating 
microstructure-sensitive proxies is to remove blood vessels and dura 
from the pial surface and reduce the effects of myelin content on pial 
surface generation via intensity normalization of gray matter (Glasser 
et al., 2014). If we directly synthesize the T1w/T2w ratio from the T1w 
data, the GAN model may not consider these biological properties of 
T2w images, leading to a low similarity between the actual and syn
thesized images. Second, we tested the generalizability of our toolbox by 
using an independent dataset containing both healthy and diseased 
populations. These findings indicate that our toolbox is appropriate for 
investigating disease-related microstructural alterations in the brain 
using only T1w MRI. Lastly, we conducted age prediction and sex clas
sification tasks using T2w images and microstructural gradient values. 
Our results support that the synthesized data using our model might 
preserve the biological properties of the actual data. The findings pro
vided reliability of the synthesized microstructural features, again 
indicating the usefulness of our synthesis model. 

There are several limitations in our study. First, the loss function we 
used was based on the L1 norm and binary cross-entropy, which is solely 
based on statistical properties rather than biological characteristics. 
Future works are required to develop loss or regularization functions 
that reflect the biological properties of the structural images. Second, U- 
Net architecture may be adjusted to enhance performance. Future works 
could consider a nested U-Net architecture (UNet++) that replaced skip- 
connection with a re-designed skip pathway, resulting in improved task 
performance (Zhou et al., 2018). Additionally, integrating the attention 
layers into the U-Net architecture could embed demographic informa
tion, such as sex or age, which may enhance the performance of each 
individual. Third, our sensitivity analysis revealed that our GAN-based 
model outperformed the vanilla LDM. This might be due to the insuffi
cient training data. The diffusion-based models often require larger 
training data than GAN-based models. In future works, we will merge 
multiple datasets or consider diffusion-based models that work well on a 
small data size to improve the synthesis performance. Lastly, our toolbox 
currently supports synthesizing T2w from T1w but not the inverse. To 
perform multimodal tasks for T1w to T2w and T2w to T1w, other deep 
learning models could be considered. 

In this study, we developed an end-to-end toolbox for synthesizing 
T2w images from T1w images and generating brain microstructural 
features, including MPC matrix, microstructural gradients, and moment 
features. The reliability and robustness of this toolbox were validated 
based on multiple sensitivity analyses, enabling the study of the brain 

Fig. 2. Performance of the synthesis model. (A) Visualization of the actual and synthesized T2w images of three representative participants (top). The box plots 
show the MAE, PSNR, and SSIM of different cortical and subcortical structures (bottom). (B) The actual and synthesized microstructural gradients and their dif
ferences of the three representative participants. The similarity of the group-level gradients is assessed using spatial correlations with spin permutation tests (bottom 
right), where the gray area indicates a 95 % confidence interval. (C) The actual and synthesized group-level moment features and their differences are shown. The 
scatter plots indicate group-level correlations between actual and synthesized moment features (bottom). Abbreviations: T2w, T2-weighted; MAE, mean absolute 
error; PNSR, peak signal-to-noise ratio; SSIM, structural similarity index measure. 

Y. Park et al.                                                                                                                                                                                                                                    



NeuroImage 291 (2024) 120595

9

Fig. 3. Validation of the toolbox using an independent dataset. (A) Visualization of the actual and synthesized T2w images of two representative participants in 
each group. (B) Shown are the actual and synthesized microstructural gradients and their differences of the control and migraine groups, respectively. The group- 
level correlations between the actual and synthesized gradients are shown with scatter plots. (C) We described moment features of the control and (D) migraine 
groups, where the group-level correlations are reported with scatter plots. Abbreviations: T2w, T2-weighted. 
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Fig. 4. Brain microstructure of an independent dataset. (A) We constructed a microstructural profile covariance (MPC) matrix (top) and microstructural gradient 
(bottom) of neurotypical controls and individuals with autism. (B) We stratified the gradient values according to four cortical hierarchical levels. 
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microstructure in vivo using only T1w MRI. Our toolbox may help re
searchers in the neuroscience community to foster future multimodal 
MRI studies to investigate brain microstructures. 
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Benkarim, O., Park, B., yong, Degré-Pelletier, J., Nelson, M.C., DeKraker, J., 
Leppert, I.R., Tardif, C., Poline, J.B., Concha, L., Bernhardt, B.C., 2022. Micapipe: A 
pipeline for multimodal neuroimaging and connectome analysis. Neuroimage 263. 
https://doi.org/10.1016/j.neuroimage.2022.119612. 

Dale, A.M., Fischl, B., Sereno, M.I., 1999. Cortical Surface-Based Analysis I. 
Segmentation and Surface Reconstruction. 

Darki, F., Nyström, P., Mcalonan, G., Bölte, S., Falck-Ytter, T., 2021. T1-Weighted/T2- 
Weighted Ratio Mapping at 5 Months Captures Individual Differences in Behavioral 
Development and Differentiates Infants at Familial Risk for Autism from Controls. 
Cerebral Cortex 31, 4068–4077. https://doi.org/10.1093/cercor/bhab069. 

Di Martino, A., O’Connor, D., Chen, B., Alaerts, K., Anderson, J.S., Assaf, M., Balsters, J. 
H., Baxter, L., Beggiato, A., Bernaerts, S., Blanken, L.M.E., Bookheimer, S.Y., Braden, 
B.B., Byrge, L., Castellanos, F.X., Dapretto, M., Delorme, R., Fair, D.A., Fishman, I., 
Fitzgerald, J., Gallagher, L., Keehn, R.J.J., Kennedy, D.P., Lainhart, J.E., Luna, B., 
Mostofsky, S.H., Müller, R.A., Nebel, M.B., Nigg, J.T., O’Hearn, K., Solomon, M., 
Toro, R., Vaidya, C.J., Wenderoth, N., White, T., Craddock, R.C., Lord, C., Leventhal, 
B., Milham, M.P., 2017. Enhancing studies of the connectome in autism using the 
autism brain imaging data exchange II. Sci Data 4. https://doi.org/10.1038/sdata.20 
17.10. 

Di Martino, A., Yan, C.G., Li, Q., Denio, E., Castellanos, F.X., Alaerts, K., Anderson, J.S., 
Assaf, M., Bookheimer, S.Y., Dapretto, M., Deen, B., Delmonte, S., Dinstein, I., Ertl- 
Wagner, B., Fair, D.A., Gallagher, L., Kennedy, D.P., Keown, C.L., Keysers, C., 
Lainhart, J.E., Lord, C., Luna, B., Menon, V., Minshew, N.J., Monk, C.S., Mueller, S., 
Müller, R.A., Nebel, M.B., Nigg, J.T., O’Hearn, K., Pelphrey, K.A., Peltier, S.J., 
Rudie, J.D., Sunaert, S., Thioux, M., Tyszka, J.M., Uddin, L.Q., Verhoeven, J.S., 
Wenderoth, N., Wiggins, J.L., Mostofsky, S.H., Milham, M.P., 2014. The autism brain 
imaging data exchange: Towards a large-scale evaluation of the intrinsic brain 
architecture in autism. Mol. Psychiatry 19, 659–667. https://doi.org/10.1038/ 
mp.2013.78. 

Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., Yang, Z., Chu, C., Xie, S., Laird, A. 
R., Fox, P.T., Eickhoff, S.B., Yu, C., Jiang, T., 2016. The Human Brainnetome Atlas: A 
New Brain Atlas Based on Connectional Architecture. Cerebral Cortex 26, 
3508–3526. https://doi.org/10.1093/cercor/bhw157. 

Fischl, B., 2012. FreeSurfer. Neuroimage. https://doi.org/10.1016/j. 
neuroimage.2012.01.021. 

Fischl, B., Liu, A., Dale, A.M., 2001. Automated Manifold Surgery: Constructing 
Geometrically Accurate and Topologically Correct Models of the Human Cerebral 
Cortex. IEEe Trans. Med. ImAging. 

Fischl, B., Sereno, M.I., Dale, A.M., 1999a. Cortical Surface-Based Analysis II: Inflation. 
Flattening, and a Surface-Based Coordinate System. 

Fischl, B., Sereno, M.I., Tootell, R.B.H., Dale, A.M., 1999b. High-Resolution Intersubject 
Averaging and a Coordinate System For the Cortical Surface, Hum. Brain Mapping. 

Y. Park et al.                                                                                                                                                                                                                                    

https://github.com/CAMIN-neuro/GAN-MAT
https://github.com/CAMIN-neuro/GAN-MAT
https://www.humanconnectome.org/
https://www.humanconnectome.org/
https://fcon_1000.projects.nitrc.org/indi/abide/
https://fcon_1000.projects.nitrc.org/indi/abide/
https://doi.org/10.1016/j.neuroimage.2024.120595
https://doi.org/10.1016/j.neuroimage.2018.05.070
https://doi.org/10.1016/j.neuroimage.2018.05.070
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1016/j.neuroimage.2010.09.025
https://doi.org/10.1016/j.neuroimage.2017.06.002
https://doi.org/10.1016/j.nicl.2022.102967
https://doi.org/10.1016/j.nicl.2022.102967
https://doi.org/10.3389/fnins.2016.00610
https://doi.org/10.1109/TMI.2021.3123252
https://doi.org/10.1016/j.neuroimage.2019.116208
https://doi.org/10.1016/j.neuroimage.2019.116208
https://doi.org/10.1016/j.acha.2006.04.006
http://refhub.elsevier.com/S1053-8119(24)00090-9/sbref0010
http://refhub.elsevier.com/S1053-8119(24)00090-9/sbref0010
https://doi.org/10.1016/j.neuroimage.2022.119612
http://refhub.elsevier.com/S1053-8119(24)00090-9/sbref0012
http://refhub.elsevier.com/S1053-8119(24)00090-9/sbref0012
https://doi.org/10.1093/cercor/bhab069
http://doi.org/10.1038/sdata.2017.10
http://doi.org/10.1038/sdata.2017.10
https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1038/mp.2013.78
https://doi.org/10.1093/cercor/bhw157
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1016/j.neuroimage.2012.01.021
http://refhub.elsevier.com/S1053-8119(24)00090-9/sbref0018
http://refhub.elsevier.com/S1053-8119(24)00090-9/sbref0018
http://refhub.elsevier.com/S1053-8119(24)00090-9/sbref0018
http://refhub.elsevier.com/S1053-8119(24)00090-9/sbref0019
http://refhub.elsevier.com/S1053-8119(24)00090-9/sbref0019


NeuroImage 291 (2024) 120595

12

Ganzetti, M., Wenderoth, N., Mantini, D., 2015. Mapping pathological changes in brain 
structure by combining T1- and T2-weighted MR imaging data. Neuroradiology. 57, 
917–928. https://doi.org/10.1007/s00234-015-1550-4. 

Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., 
Ugurbil, K., Andersson, J., Beckmann, C.F., Jenkinson, M., Smith, S.M., Van Essen, D. 
C., 2016. A multi-modal parcellation of human cerebral cortex. Nature 536, 
171–178. https://doi.org/10.1038/nature18933. 

Glasser, M.F., Goyal, M.S., Preuss, T.M., Raichle, M.E., Van Essen, D.C., 2014. Trends and 
properties of human cerebral cortex: Correlations with cortical myelin content. 
Neuroimage. https://doi.org/10.1016/j.neuroimage.2013.03.060. 

Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., 
Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R., Van Essen, D.C., Jenkinson, M., 2013. 
The minimal preprocessing pipelines for the Human Connectome Project. 
Neuroimage 80, 105–124. https://doi.org/10.1016/j.neuroimage.2013.04.127. 

Glasser, M.F., van Essen, D.C., 2011. Mapping human cortical areas in vivo based on 
myelin content as revealed by T1- and T2-weighted MRI. J. Neurosci. 31, 
11597–11616. https://doi.org/10.1523/JNEUROSCI.2180-11.2011. 

Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., 
Courville, A., Bengio, Y., 2014. Generative Adversarial Networks. 

Hong, S.J., de Wael, R.V., Bethlehem, R.A.I., Lariviere, S., Paquola, C., Valk, S.L., 
Milham, M.P., Di Martino, A., Margulies, D.S., Smallwood, J., Bernhardt, B.C., 2019. 
Atypical functional connectome hierarchy in autism. Nat. Commun. 10 https://doi. 
org/10.1038/s41467-019-08944-1. 

Huang, H., Yu, P.S., Wang, C., 2018. An Introduction to Image Synthesis with Generative 
Adversarial Nets. 

Huang, P., Liu, X., Huang, Y., 2021. Data Augmentation For Medical MR Image Using 
Generative Adversarial Networks. 

Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A., 2016. Image-to-Image Translation with 
Conditional Adversarial Networks. 

Jenkinson, M., Beckmann, C.F., Behrens, T.E.J., Woolrich, M.W., Smith, S.M., 2012. FSL. 
Neuroimage 62, 782–790. https://doi.org/10.1016/j.neuroimage.2011.09.015. 

Kawahara, D., Nagata, Y., 2021. T1-weighted and T2-weighted MRI image synthesis with 
convolutional generative adversarial networks. Reports of Practical Oncology and 
Radiotherapy 26, 35–42. https://doi.org/10.5603/RPOR.a2021.0005. 

Kingma, D.P., Welling, M., 2013. Auto-Encoding Variational Bayes. 
Langensee, L., Rumetshofer, T., Behjat, H., Novén, M., Li, P., Mårtensson, J., 2022. T1w/ 

T2w Ratio and Cognition in 9-to-11-Year-Old Children. Brain Sci. 12 https://doi. 
org/10.3390/brainsci12050599. 

Langs, G., Golland, P., Ghosh, S.S., 2015. Predicting activation across individuals with 
resting-state functional connectivity based multi-atlas label fusion. Lecture Notes in 
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and 
Lecture Notes in Bioinformatics). Springer Verlag, pp. 313–320. https://doi.org/ 
10.1007/978-3-319-24571-3_38. 

Margulies, D.S., Ghosh, S.S., Goulas, A., Falkiewicz, M., Huntenburg, J.M., Langs, G., 
Bezgin, G., Eickhoff, S.B., Castellanos, F.X., Petrides, M., Jefferies, E., Smallwood, J., 
2016. Situating the default-mode network along a principal gradient of macroscale 
cortical organization. Proc. Natl. Acad. Sci. u S. a 113, 12574–12579. https://doi. 
org/10.1073/pnas.1608282113. 

Mesulam, M.M., 1998. From sensation to cognition. Brain. 
Milham, P.M., Damien, F., Maarten, M., Stewart, H.M., 2012. The ADHD-200 

Consortium: A model to advance the translational potential of neuroimaging in 
clinical neuroscience. Front. Syst. Neurosci. 1–5. https://doi.org/10.3389/ 
fnsys.2012.00062. 

Nie, D., Trullo, R., Lian, J., Wang, L., Petitjean, C., Ruan, S., Wang, Q., Shen, D., 2018. 
Medical Image Synthesis with Deep Convolutional Adversarial Networks. IEEE 
Trans. Biomed. Eng. 65, 2720–2730. https://doi.org/10.1109/TBME.2018.2814538. 

Nooner, K.B., Colcombe, S.J., Tobe, R.H., Mennes, M., Benedict, M.M., Moreno, A.L., 
Panek, L.J., Brown, S., Zavitz, S.T., Li, Q., Sikka, S., Gutman, D., Bangaru, S., 
Schlachter, R.T., Kamiel, S.M., Anwar, A.R., Hinz, C.M., Kaplan, M.S., Rachlin, A.B., 
Adelsberg, S., Cheung, B., Khanuja, R., Yan, C., Craddock, C.C., Calhoun, V., 
Courtney, W., King, M., Wood, D., Cox, C.L., Kelly, A.M.C., Di Martino, A., 
Petkova, E., Reiss, P.T., Duan, N., Thomsen, D., Biswal, B., Coffey, B., Hoptman, M. 
J., Javitt, D.C., Pomara, N., Sidtis, J.J., Koplewicz, H.S., Castellanos, F.X., 
Leventhal, B.L., Milham, M.P., 2012. The NKI-Rockland sample: A model for 
accelerating the pace of discovery science in psychiatry. Front. Neurosci. https://doi. 
org/10.3389/fnins.2012.00152. 

Osokin, A., Chessel, A., Salas, R.E.C., Vaggi, F., 2017. GANs for Biological Image 
Synthesis. 

Paquola, C., Bethlehem, R.A., Seidlitz, J., Wagstyl, K., Romero-Garcia, R., Whitaker, K.J., 
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