001024849 001__ 1024849 001024849 005__ 20250204113831.0 001024849 0247_ $$2doi$$a10.1016/j.neuroimage.2024.120534 001024849 0247_ $$2ISSN$$a1053-8119 001024849 0247_ $$2ISSN$$a1095-9572 001024849 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02515 001024849 0247_ $$2pmid$$a38340881 001024849 0247_ $$2WOS$$aWOS:001185401200001 001024849 037__ $$aFZJ-2024-02515 001024849 082__ $$a610 001024849 1001_ $$0P:(DE-HGF)0$$aYoo, Seulki$$b0 001024849 245__ $$aWhole-brain structural connectome asymmetry in autism 001024849 260__ $$aOrlando, Fla.$$bAcademic Press$$c2024 001024849 3367_ $$2DRIVER$$aarticle 001024849 3367_ $$2DataCite$$aOutput Types/Journal article 001024849 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712675471_18043 001024849 3367_ $$2BibTeX$$aARTICLE 001024849 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001024849 3367_ $$00$$2EndNote$$aJournal Article 001024849 520__ $$aAutism spectrum disorder is a common neurodevelopmental condition that manifests as a disruption in sensory and social skills. Although it has been shown that the brain morphology of individuals with autism is asymmetric, how this differentially affects the structural connectome organization of each hemisphere remains under-investigated. We studied whole-brain structural connectivity-based brain asymmetry in individuals with autism using diffusion magnetic resonance imaging obtained from the Autism Brain Imaging Data Exchange initiative. By leveraging dimensionality reduction techniques, we constructed low-dimensional representations of structural connectivity and calculated their asymmetry index. Comparing the asymmetry index between individuals with autism and neurotypical controls, we found atypical structural connectome asymmetry in the sensory and default-mode regions, particularly showing weaker asymmetry towards the right hemisphere in autism. Network communication provided topological underpinnings by demonstrating that the inferior temporal cortex and limbic and frontoparietal regions showed reduced global network communication efficiency and decreased send-receive network navigation in the inferior temporal and lateral visual cortices in individuals with autism. Finally, supervised machine learning revealed that structural connectome asymmetry could be used as a measure for predicting communication-related autistic symptoms and nonverbal intelligence. Our findings provide insights into macroscale structural connectome alterations in autism and their topological underpinnings. 001024849 536__ $$0G:(DE-HGF)POF4-5252$$a5252 - Brain Dysfunction and Plasticity (POF4-525)$$cPOF4-525$$fPOF IV$$x0 001024849 536__ $$0G:(DE-HGF)POF4-5251$$a5251 - Multilevel Brain Organization and Variability (POF4-525)$$cPOF4-525$$fPOF IV$$x1 001024849 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001024849 7001_ $$0P:(DE-HGF)0$$aJang, Yurim$$b1 001024849 7001_ $$0P:(DE-HGF)0$$aHong, Seok-Jun$$b2 001024849 7001_ $$0P:(DE-HGF)0$$aPark, Hyunjin$$b3 001024849 7001_ $$0P:(DE-Juel1)173843$$aValk, Sofie L.$$b4 001024849 7001_ $$0P:(DE-HGF)0$$aBernhardt, Boris C.$$b5 001024849 7001_ $$0P:(DE-HGF)0$$aPark, Bo-yong$$b6$$eCorresponding author 001024849 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2024.120534$$gVol. 288, p. 120534 -$$p120534 -$$tNeuroImage$$v288$$x1053-8119$$y2024 001024849 8564_ $$uhttps://juser.fz-juelich.de/record/1024849/files/1-s2.0-S1053811924000296-main.pdf$$yOpenAccess 001024849 8564_ $$uhttps://juser.fz-juelich.de/record/1024849/files/1-s2.0-S1053811924000296-main.gif?subformat=icon$$xicon$$yOpenAccess 001024849 8564_ $$uhttps://juser.fz-juelich.de/record/1024849/files/1-s2.0-S1053811924000296-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 001024849 8564_ $$uhttps://juser.fz-juelich.de/record/1024849/files/1-s2.0-S1053811924000296-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 001024849 8564_ $$uhttps://juser.fz-juelich.de/record/1024849/files/1-s2.0-S1053811924000296-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 001024849 909CO $$ooai:juser.fz-juelich.de:1024849$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 001024849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173843$$aForschungszentrum Jülich$$b4$$kFZJ 001024849 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)173843$$a Max Planck Institute for Cognitive and Brain Sciences, Leipzig,$$b4 001024849 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Department of Data Science, Inha University, Incheon, the Republic of Korea. boyong.park@inha.ac.kr$$b6 001024849 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5252$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 001024849 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5251$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x1 001024849 9141_ $$y2024 001024849 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-21 001024849 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2023-10-21 001024849 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 001024849 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:47:40Z 001024849 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:47:40Z 001024849 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-21 001024849 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-21 001024849 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001024849 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-21 001024849 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:47:40Z 001024849 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-16$$wger 001024849 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2022$$d2024-12-16 001024849 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16 001024849 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16 001024849 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16 001024849 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16 001024849 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16 001024849 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-16 001024849 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2024-12-16 001024849 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16 001024849 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2022$$d2024-12-16 001024849 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0 001024849 980__ $$ajournal 001024849 980__ $$aVDB 001024849 980__ $$aUNRESTRICTED 001024849 980__ $$aI:(DE-Juel1)INM-7-20090406 001024849 9801_ $$aFullTexts