001024852 001__ 1024852
001024852 005__ 20250203103213.0
001024852 0247_ $$2doi$$a10.1149/MA2023-02562719mtgabs
001024852 0247_ $$2ISSN$$a1091-8213
001024852 0247_ $$2ISSN$$a2151-2043
001024852 037__ $$aFZJ-2024-02518
001024852 082__ $$a540
001024852 1001_ $$0P:(DE-Juel1)140525$$aKorte, Carsten$$b0$$ufzj
001024852 1112_ $$a243rd ECS Meeting$$cBoston$$d2023-05-28 - 2023-06-02$$wUSA
001024852 245__ $$aInfluence of Acidity, Water and Temperature on the Double Layer Properties of Protic Ionic Liquids for Future Fuel Cell Applications
001024852 260__ $$c2023
001024852 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1712722627_14826
001024852 3367_ $$033$$2EndNote$$aConference Paper
001024852 3367_ $$2BibTeX$$aINPROCEEDINGS
001024852 3367_ $$2DRIVER$$aconferenceObject
001024852 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001024852 3367_ $$2ORCID$$aOTHER
001024852 520__ $$aPolymer electrolyte membrane fuel cells (PEMFC) are a viable alternative to combustion engines and rechargeable batteries for automotive applications. However, the operating temperature of PEMFCs using sulfonated fluoropolymers, e.g. NAFION®, is limited below 80 °C (ambient pressure), because the proton conduction relies on the presence of water. A PEMFC operating above 100 °C would allow a much more simplified system setup for water and heat management. This requires novel non-aqueous protic electrolytes. Proton conducting ionic liquids (PIL) are promising candidates. [1,2]. However, the fuel cell relevant electrode reactions—oxygen reduction and hydrogen oxidation reaction (ORR/HOR)—are not as well understood as in aqueous electrolytes.In this study, we employed electrochemical impedance spectroscopy (EIS), cyclovoltammetry (CV), chronoamperomery (CA) and steady state current measurements to elucidate the double layer properties of the platinum electrode/PIL interface, the kinetics and possible mechanism of the ORR. Three PILs with different cation acidities with an Brønsted-acidic cation [HA+][X−] are compared, [Dema][TfO], [1-EIm][TfO] and [2-Sema][TfO].Comparing the PILs with different cation acidity strongly suggest that the first reduction step including the proton transfer to the (catalytic) active sites on the electrode is mainly determining the ORR rate. The presence of residual water, unavoidable also at fuel cell operation >100 °C, is another important parameter. H2O modifies the ordered structure of the electrochemical double layer. Its protolysis equilibrium with an acidic PIL cation results in the formation of H3O+ that serves as a proton donor in the rate determining step and thus influences the ORR kinetics. Highly acidic PIL cations serve as a proton donor as well, particularly at low H2O concentrations, whereas the role of H3O+ as proton donor in the ORR becomes more prominent at higher water concentrations [3]. In low acidic PILs, H3O+ is the predominant proton donor and the ORR rate is significantly smaller resulting in considerably higher overpotentials. Thus, the onset potential of the ORR in a PIL based fuel cell will depend on both the concentration of residual water and the PIL cation acidity.Plots of the potential-dependent data from EIS measurements in the complex capacitance plane (CCP) show that at least two differential double layer capacitances are present, depending on the cell potential U (vs. RHE), water concentration c(H2O) and temperature T. The double layer properties of the highly acidic [2-Sema][TfO] are significantly different compared to the less acidic PILs [1-EIm][TfO] and [Dema][TfO]. The potential dependent capacitance curves were discussed by taking a mean field model, the presence of water and short range correlations of ions into account. [4, 5] The combined electrochemical kinetics and double layer measurements provide a deeper insight into the double layer structure at the Pt electrode/PIL interface to reveal the rate limiting parameters of the ORR and its mechanism.[1] K. Wippermann, J. Giffin, S. Kuhri, W. Lehnert and C. Korte, Phys. Chem. Chem. Phys. 19, 24706 (2017)[2] K. Wippermann, Y. Suo and C. Korte, J. Phys. Chem. C 125(8), 8 (2021)[3] H. Hou, H. M. Schütz, J. Giffin, K. Wippermann, X. Gao, A. Mariani, S. Passerini and C. Korte, ACS Appl. Mater. Interfaces 13, 8370 (2021)[4] Z. A. H. Goodwin, G. Feng and A. A. Kornyshev, Electrochim. Acta 225, 190 (2017)[5] J. Friedl, I. I. E. Markovits, M. Herpich, G. Feng, A. A. Kornyshev and U. Stimming, ChemElectroChem 4, 216 (2017)
001024852 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001024852 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024852 7001_ $$0P:(DE-Juel1)172823$$aSuo, Yanpeng$$b1
001024852 7001_ $$0P:(DE-Juel1)129946$$aWippermann, Klaus$$b2$$ufzj
001024852 7001_ $$0P:(DE-Juel1)142194$$aRodenbücher, Christian$$b3$$ufzj
001024852 773__ $$0PERI:(DE-600)2438749-6$$a10.1149/MA2023-02562719mtgabs$$gVol. MA2023-02, no. 56, p. 2719 - 2719$$x2151-2043$$y2023
001024852 909CO $$ooai:juser.fz-juelich.de:1024852$$pVDB
001024852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140525$$aForschungszentrum Jülich$$b0$$kFZJ
001024852 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)140525$$aRWTH Aachen$$b0$$kRWTH
001024852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129946$$aForschungszentrum Jülich$$b2$$kFZJ
001024852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142194$$aForschungszentrum Jülich$$b3$$kFZJ
001024852 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001024852 9141_ $$y2024
001024852 920__ $$lyes
001024852 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
001024852 980__ $$aabstract
001024852 980__ $$aVDB
001024852 980__ $$aI:(DE-Juel1)IEK-14-20191129
001024852 980__ $$aUNRESTRICTED
001024852 981__ $$aI:(DE-Juel1)IET-4-20191129