001024853 001__ 1024853
001024853 005__ 20250203103115.0
001024853 0247_ $$2doi$$a10.1149/MA2023-02562718mtgabs
001024853 0247_ $$2ISSN$$a1091-8213
001024853 0247_ $$2ISSN$$a2151-2043
001024853 037__ $$aFZJ-2024-02519
001024853 082__ $$a540
001024853 1001_ $$0P:(DE-Juel1)142194$$aRodenbücher, Christian$$b0$$ufzj
001024853 1112_ $$a243rd ECS Meeting$$cBoston$$d2023-05-28 - 2023-06-02$$wUSA
001024853 245__ $$aNanoscale Investigations of the Electric Double Layer in Protic Ionic Liquids
001024853 260__ $$c2023
001024853 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1712723161_14761
001024853 3367_ $$033$$2EndNote$$aConference Paper
001024853 3367_ $$2BibTeX$$aINPROCEEDINGS
001024853 3367_ $$2DRIVER$$aconferenceObject
001024853 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001024853 3367_ $$2ORCID$$aOTHER
001024853 520__ $$aA hydrogen-based energy storage system will be the backbone of a future energy grid using renewable energies. Polymer electrolyte membrane fuel cells (PEMFCs) are a key element in this energy system as they convert chemical energy stored as hydrogen into electrical energy on demand. PEMFC systems, especially for automotive application, could be significantly improved by increasing the operation temperature above 100 °C. Protic ionic liquids are promising candidates as non-aqueous protic electrolytes for next-generation high-temperature polymer electrolyte membrane fuel cells. These fuel cells have a target operation temperature of 160 °C and allowing for a more efficient water and heat management compared to conventional Nafion®-based PEMFCs, which operate at temperatures below 80 °C [1].In order to ensure a reliable and efficient operation an electrolyte with a high electrochemical performance and stability has to be selected. For this purpose, protic ionic liquids have been proposed and first fuel cell tests have shown promising results [2]. Hence, we aim on understanding the properties of this class of novel electrolytes on an atomistic level, which would allow designing suitable material combinations and predicting their properties for an efficient fuel cell operation. As ionic liquids are molten salts, which are liquid below 100 °C, their electrochemical properties differ significantly from those of aqueous solutions. Instead of a classical electric double layer, which can be described by the models provided by Helmholtz, Gouy-Chapman and Stern, the interface structure formed between the electrolyte and a charged electrode is governed by the interplay between coulomb interaction and steric effects between the (large) molecular ions [3]. In order to understand the formation of this double layer on a metallic electrode, we employ atomic force microscopy and infrared spectroscopy in combination with molecular dynamics simulations. Our results show that in the interface region between the prototype protic ionic liquid diethylmethylammonium triflate ([Dema][TfO]) and a Pt electrode, a dense layered structure consisting of alternating anion and cation layers is present, that extends several nanometres into the bulk of the electrolyte [4]. The composition and structure changes with applied potential due to a preferential attraction of anions or cations depending on the electrode charge. When water is added to the ionic liquid, the layered structure becomes distorted and water molecules appear near the electrode. Since the presence of water will also influence the relevant electrochemical processes such as the oxygen reduction reaction (ORR), the analysis of the double layer structure on an atomistic scale is necessary in order to understand the subtle interactions between the molecules in the electrolyte and to propose design routes for novel more efficient ionic liquid-based electrolytes.Wippermann, K.; Suo, Y.; Korte, C. Oxygen Reduction Reaction Kinetics on Pt in Mixtures of Proton-Conducting Ionic Liquids and Water: The Influence of Cation Acidity. J. Phys. Chem. C2021, 125, 4423–4435, doi:10.1021/acs.jpcc.0c11374.Skorikova, G.; Rauber, D.; Aili, D.; Martin, S.; Li, Q.; Henkensmeier, D.; Hempelmann, R. Protic Ionic Liquids Immobilized in Phosphoric Acid-Doped Polybenzimidazole Matrix Enable Polymer Electrolyte Fuel Cell Operation at 200 °C. Journal of Membrane Science2020, 608, 118188, doi:10.1016/j.memsci.2020.118188.Rodenbücher, C.; Wippermann, K.; Korte, C. Atomic Force Spectroscopy on Ionic Liquids. Applied Sciences2019, 9, 2207, doi:10.3390/app9112207.Rodenbücher, C.; Chen, Y.; Wippermann, K.; Kowalski, P.M.; Giesen, M.; Mayer, D.; Hausen, F.; Korte, C. The Structure of the Electric Double Layer of the Protic Ionic Liquid [Dema][TfO] Analyzed by Atomic Force Spectroscopy. International Journal of Molecular Sciences2021, 22, 12653, doi:10.3390/ijms222312653.
001024853 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001024853 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024853 7001_ $$0P:(DE-Juel1)180579$$aChen, Yingzhen$$b1$$ufzj
001024853 7001_ $$0P:(DE-Juel1)129946$$aWippermann, Klaus$$b2$$ufzj
001024853 7001_ $$0P:(DE-Juel1)140525$$aKorte, Carsten$$b3$$ufzj
001024853 773__ $$0PERI:(DE-600)2438749-6$$a10.1149/MA2023-02562718mtgabs$$gVol. MA2023-02, no. 56, p. 2718 - 2718$$x2151-2043$$y2023
001024853 909CO $$ooai:juser.fz-juelich.de:1024853$$pVDB
001024853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142194$$aForschungszentrum Jülich$$b0$$kFZJ
001024853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180579$$aForschungszentrum Jülich$$b1$$kFZJ
001024853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129946$$aForschungszentrum Jülich$$b2$$kFZJ
001024853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140525$$aForschungszentrum Jülich$$b3$$kFZJ
001024853 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)140525$$aRWTH Aachen$$b3$$kRWTH
001024853 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001024853 9141_ $$y2024
001024853 920__ $$lyes
001024853 9201_ $$0I:(DE-Juel1)IEK-14-20191129$$kIEK-14$$lElektrochemische Verfahrenstechnik$$x0
001024853 980__ $$aabstract
001024853 980__ $$aVDB
001024853 980__ $$aI:(DE-Juel1)IEK-14-20191129
001024853 980__ $$aUNRESTRICTED
001024853 981__ $$aI:(DE-Juel1)IET-4-20191129