001024885 001__ 1024885
001024885 005__ 20250203103227.0
001024885 0247_ $$2doi$$a10.1002/cssc.202300451
001024885 0247_ $$2ISSN$$a1864-5631
001024885 0247_ $$2ISSN$$a1864-564X
001024885 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02536
001024885 0247_ $$2pmid$$a37104827
001024885 0247_ $$2WOS$$aWOS:000975677100001
001024885 037__ $$aFZJ-2024-02536
001024885 082__ $$a540
001024885 1001_ $$avon Holtum, Bastian$$b0
001024885 245__ $$aAccessing the Primary Solid–Electrolyte Interphase on Lithium Metal: A Method for Low‐Concentration Compound Analysis
001024885 260__ $$aWeinheim$$bWiley-VCH$$c2023
001024885 3367_ $$2DRIVER$$aarticle
001024885 3367_ $$2DataCite$$aOutput Types/Journal article
001024885 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712732932_14826
001024885 3367_ $$2BibTeX$$aARTICLE
001024885 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024885 3367_ $$00$$2EndNote$$aJournal Article
001024885 520__ $$aDespite large research efforts in the fields of lithium ion and lithium metal batteries, there are still unanswered questions. One of them is the formation of the solid−electrolyte interphase (SEI) in lithium-metal-anode-based battery systems. Until now, a compound profile analysis of the SEI on lithium metal was challenging as the amounts of many compounds after simple contact of lithium metal and the electrolyte were too low for detection with analytical methods. This study presents a novel approach on unravelling the SEI compound profile through accumulation in the gas, liquid electrolyte, and solid phase. The method uses the intrinsic behavior of lithium metal to spontaneously react with the liquid electrolyte. In combination with complementary, state-of-the-art analytical instrumentation and methods, this approach provides qualitative and quantitative results on all three phases revealing the vast variety of compounds formed in carbonate-based electrolytes.
001024885 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024885 536__ $$0G:(BMBF)13XP0225C$$aLillint - Thermodynamic and kinetic stability of the Lithium-Liquid Electrolyte Interface (13XP0225C)$$c13XP0225C$$x1
001024885 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024885 7001_ $$aKubot, Maximilian$$b1
001024885 7001_ $$aPeschel, Christoph$$b2
001024885 7001_ $$aRodehorst, Uta$$b3
001024885 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4
001024885 7001_ $$00000-0003-1508-6073$$aNowak, Sascha$$b5
001024885 7001_ $$00000-0001-8608-4521$$aWiemers-Meyer, Simon$$b6$$eCorresponding author
001024885 773__ $$0PERI:(DE-600)2411405-4$$a10.1002/cssc.202300451$$gVol. 16, no. 9, p. e202300451$$n9$$pe202300451$$tChemSusChem$$v16$$x1864-5631$$y2023
001024885 8564_ $$uhttps://juser.fz-juelich.de/record/1024885/files/ChemSusChem%20-%202023%20-%20Holtum%20-%20Accessing%20the%20Primary%20Solid%20Electrolyte%20Interphase%20on%20Lithium%20Metal%20A%20Method%20for-1.pdf$$yOpenAccess
001024885 8564_ $$uhttps://juser.fz-juelich.de/record/1024885/files/ChemSusChem%20-%202023%20-%20Holtum%20-%20Accessing%20the%20Primary%20Solid%20Electrolyte%20Interphase%20on%20Lithium%20Metal%20A%20Method%20for-1.gif?subformat=icon$$xicon$$yOpenAccess
001024885 8564_ $$uhttps://juser.fz-juelich.de/record/1024885/files/ChemSusChem%20-%202023%20-%20Holtum%20-%20Accessing%20the%20Primary%20Solid%20Electrolyte%20Interphase%20on%20Lithium%20Metal%20A%20Method%20for-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024885 8564_ $$uhttps://juser.fz-juelich.de/record/1024885/files/ChemSusChem%20-%202023%20-%20Holtum%20-%20Accessing%20the%20Primary%20Solid%20Electrolyte%20Interphase%20on%20Lithium%20Metal%20A%20Method%20for-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024885 8564_ $$uhttps://juser.fz-juelich.de/record/1024885/files/ChemSusChem%20-%202023%20-%20Holtum%20-%20Accessing%20the%20Primary%20Solid%20Electrolyte%20Interphase%20on%20Lithium%20Metal%20A%20Method%20for-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024885 909CO $$ooai:juser.fz-juelich.de:1024885$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001024885 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
001024885 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024885 9141_ $$y2024
001024885 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-25
001024885 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25
001024885 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001024885 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-25
001024885 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEMSUSCHEM : 2022$$d2023-10-25
001024885 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-25$$wger
001024885 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-25
001024885 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25
001024885 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024885 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMSUSCHEM : 2022$$d2023-10-25
001024885 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-25
001024885 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-25
001024885 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024885 9801_ $$aFullTexts
001024885 980__ $$ajournal
001024885 980__ $$aVDB
001024885 980__ $$aUNRESTRICTED
001024885 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024885 981__ $$aI:(DE-Juel1)IMD-4-20141217