001024888 001__ 1024888
001024888 005__ 20250203103234.0
001024888 0247_ $$2doi$$a10.1002/aenm.202203256
001024888 0247_ $$2ISSN$$a1614-6832
001024888 0247_ $$2ISSN$$a1614-6840
001024888 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02539
001024888 0247_ $$2WOS$$aWOS:000891051000001
001024888 037__ $$aFZJ-2024-02539
001024888 082__ $$a050
001024888 1001_ $$00000-0002-7637-1356$$aAdhitama, Egy$$b0$$eCorresponding author
001024888 245__ $$aOn the Practical Applicability of the Li Metal‐Based Thermal Evaporation Prelithiation Technique on Si Anodes for Lithium Ion Batteries
001024888 260__ $$aWeinheim$$bWiley-VCH$$c2023
001024888 3367_ $$2DRIVER$$aarticle
001024888 3367_ $$2DataCite$$aOutput Types/Journal article
001024888 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712733161_15405
001024888 3367_ $$2BibTeX$$aARTICLE
001024888 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024888 3367_ $$00$$2EndNote$$aJournal Article
001024888 500__ $$aZudem unterstützt durch BMBF Grant ProLiFest (03XP0253A)
001024888 520__ $$aLithium ion batteries (LIBs) using silicon as anode material are endowed with much higher energy density than state-of-the-art graphite-based LIBs. However, challenges of volume expansion and related dynamic surfaces lead to continuous (re-)formation of the solid electrolyte interphase, active lithium losses, and rapid capacity fading. Cell failure can be further accelerated when Si is paired with high-capacity, but also rather reactive Ni-rich cathodes, such as LiNi0.8Co0.1Mn0.1O2 (NCM-811). Here, the practical applicability of thermal evaporation of Li metal is evaluated as a prelithiation technique on micrometer-sized Si (µ-Si) electrodes in addressing such challenges. NCM-811 || “prelithiated µ-Si” full-cells (25% degree of prelithiation) can attain a higher initial discharge capacity of ≈192 mAh gNCM-811−1 than the cells without prelithiation with only ≈160 mAh gNCM-811−1. This study deeply discusses significant consequences of electrode capacity balancing (N:P ratio) with regard to prelithiation on the performance of full-cells. The trade-off between cell lifetime and energy density is also highlighted. It is essential to point out that the phenomena discussed here can further guide the direction of research in using the thermal evaporation of Li metal as a prelithiation technique toward its practical application on Si-based LIBs.
001024888 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024888 536__ $$0G:(EU-Grant)608491$$aBACCARA - Battery and superCapacitor ChARActerization and testing (608491)$$c608491$$fFP7-ENERGY-2013-1$$x1
001024888 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024888 7001_ $$00000-0002-9741-2989$$aBela, Marlena M.$$b1
001024888 7001_ $$aDemelash, Feleke$$b2
001024888 7001_ $$0P:(DE-Juel1)195878$$aStan, Marian C.$$b3
001024888 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4
001024888 7001_ $$00000-0001-7053-3986$$aGomez-Martin, Aurora$$b5
001024888 7001_ $$00000-0002-2097-5193$$aPlacke, Tobias$$b6
001024888 773__ $$0PERI:(DE-600)2594556-7$$a10.1002/aenm.202203256$$gVol. 13, no. 3, p. 2203256$$n3$$p2203256$$tAdvanced energy materials$$v13$$x1614-6832$$y2023
001024888 8564_ $$uhttps://juser.fz-juelich.de/record/1024888/files/Advanced%20Energy%20Materials%20-%202022%20-%20Adhitama%20-%20On%20the%20Practical%20Applicability%20of%20the%20Li%20Metal%E2%80%90Based%20Thermal%20Evaporation.pdf$$yOpenAccess
001024888 8564_ $$uhttps://juser.fz-juelich.de/record/1024888/files/Advanced%20Energy%20Materials%20-%202022%20-%20Adhitama%20-%20On%20the%20Practical%20Applicability%20of%20the%20Li%20Metal%E2%80%90Based%20Thermal%20Evaporation.gif?subformat=icon$$xicon$$yOpenAccess
001024888 8564_ $$uhttps://juser.fz-juelich.de/record/1024888/files/Advanced%20Energy%20Materials%20-%202022%20-%20Adhitama%20-%20On%20the%20Practical%20Applicability%20of%20the%20Li%20Metal%E2%80%90Based%20Thermal%20Evaporation.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024888 8564_ $$uhttps://juser.fz-juelich.de/record/1024888/files/Advanced%20Energy%20Materials%20-%202022%20-%20Adhitama%20-%20On%20the%20Practical%20Applicability%20of%20the%20Li%20Metal%E2%80%90Based%20Thermal%20Evaporation.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024888 8564_ $$uhttps://juser.fz-juelich.de/record/1024888/files/Advanced%20Energy%20Materials%20-%202022%20-%20Adhitama%20-%20On%20the%20Practical%20Applicability%20of%20the%20Li%20Metal%E2%80%90Based%20Thermal%20Evaporation.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024888 909CO $$ooai:juser.fz-juelich.de:1024888$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
001024888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195878$$aForschungszentrum Jülich$$b3$$kFZJ
001024888 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
001024888 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024888 9141_ $$y2024
001024888 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26
001024888 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-26
001024888 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-26
001024888 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001024888 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2023-10-26
001024888 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-26
001024888 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-26$$wger
001024888 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26
001024888 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-26
001024888 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024888 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2023-10-26
001024888 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ENERGY MATER : 2022$$d2023-10-26
001024888 915__ $$0StatID:(DE-HGF)9925$$2StatID$$aIF >= 25$$bADV ENERGY MATER : 2022$$d2023-10-26
001024888 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-26
001024888 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26
001024888 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024888 9801_ $$aFullTexts
001024888 980__ $$ajournal
001024888 980__ $$aVDB
001024888 980__ $$aUNRESTRICTED
001024888 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024888 981__ $$aI:(DE-Juel1)IMD-4-20141217