001     1024892
005     20250203103202.0
024 7 _ |a 10.1016/j.xcrp.2023.101720
|2 doi
024 7 _ |a 10.34734/FZJ-2024-02543
|2 datacite_doi
024 7 _ |a WOS:001144156000001
|2 WOS
037 _ _ |a FZJ-2024-02543
082 _ _ |a 530
100 1 _ |a Wang, Qiushi
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Large-scale field data-based battery aging prediction driven by statistical features and machine learning
260 _ _ |a [New York, NY]
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712733931_14826
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Unterstützt durch das Projekt ‘‘COBALT-P’’ (16BZF314C) des BMKW
520 _ _ |a Accurately predicting battery aging is critical for mitigating performance degradation during battery usage. While the automotive industry recognizes the importance of utilizing field data for battery performance evaluation and optimization, its practical implementation faces challenges in data collection and the lack of field data-based prognosis methods. To address this, we collect field data from 60 electric vehicles operated for over 4 years and develop a robust data-driven approach for lithium-ion battery aging prediction based on statistical features. The proposed pre-processing methods integrate data cleaning, transformation, and reconstruction. In addition, we introduce multi-level screening techniques to extract statistical features from historical usage behavior. Utilizing machine learning, we accurately predict aging trajectories and worst-lifetime batteries while quantifying prediction uncertainty. This research emphasizes a field data-based framework for battery health management, which not only provides a vital basis for onboard health monitoring and prognosis but also paves the way for battery second-life evaluation scenarios.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wang, Zhenpo
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Liu, Peng
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Zhang, Lei
|b 3
700 1 _ |a Sauer, Dirk Uwe
|0 P:(DE-Juel1)172625
|b 4
700 1 _ |a Li, Weihan
|0 0000-0002-2916-3968
|b 5
|e Corresponding author
773 _ _ |a 10.1016/j.xcrp.2023.101720
|g Vol. 4, no. 12, p. 101720 -
|0 PERI:(DE-600)3015727-4
|n 12
|p 101720 -
|t Cell reports / Physical science
|v 4
|y 2023
|x 2666-3864
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024892/files/Large-scale%20field%20data-based%20battery%20aging%20prediction%20driven%20by%20statistical%20features%20and%20machine%20learning.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024892/files/Large-scale%20field%20data-based%20battery%20aging%20prediction%20driven%20by%20statistical%20features%20and%20machine%20learning.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024892/files/Large-scale%20field%20data-based%20battery%20aging%20prediction%20driven%20by%20statistical%20features%20and%20machine%20learning.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024892/files/Large-scale%20field%20data-based%20battery%20aging%20prediction%20driven%20by%20statistical%20features%20and%20machine%20learning.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024892/files/Large-scale%20field%20data-based%20battery%20aging%20prediction%20driven%20by%20statistical%20features%20and%20machine%20learning.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024892
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172625
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-27
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL REP PHYS SCI : 2022
|d 2023-10-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL REP PHYS SCI : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:54:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:54:40Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:54:40Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21