Hauptseite > Publikationsdatenbank > Large-scale field data-based battery aging prediction driven by statistical features and machine learning > print |
001 | 1024892 | ||
005 | 20250203103202.0 | ||
024 | 7 | _ | |a 10.1016/j.xcrp.2023.101720 |2 doi |
024 | 7 | _ | |a 10.34734/FZJ-2024-02543 |2 datacite_doi |
024 | 7 | _ | |a WOS:001144156000001 |2 WOS |
037 | _ | _ | |a FZJ-2024-02543 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Wang, Qiushi |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Large-scale field data-based battery aging prediction driven by statistical features and machine learning |
260 | _ | _ | |a [New York, NY] |c 2023 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712733931_14826 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a Unterstützt durch das Projekt ‘‘COBALT-P’’ (16BZF314C) des BMKW |
520 | _ | _ | |a Accurately predicting battery aging is critical for mitigating performance degradation during battery usage. While the automotive industry recognizes the importance of utilizing field data for battery performance evaluation and optimization, its practical implementation faces challenges in data collection and the lack of field data-based prognosis methods. To address this, we collect field data from 60 electric vehicles operated for over 4 years and develop a robust data-driven approach for lithium-ion battery aging prediction based on statistical features. The proposed pre-processing methods integrate data cleaning, transformation, and reconstruction. In addition, we introduce multi-level screening techniques to extract statistical features from historical usage behavior. Utilizing machine learning, we accurately predict aging trajectories and worst-lifetime batteries while quantifying prediction uncertainty. This research emphasizes a field data-based framework for battery health management, which not only provides a vital basis for onboard health monitoring and prognosis but also paves the way for battery second-life evaluation scenarios. |
536 | _ | _ | |a 1223 - Batteries in Application (POF4-122) |0 G:(DE-HGF)POF4-1223 |c POF4-122 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Wang, Zhenpo |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Liu, Peng |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Zhang, Lei |b 3 |
700 | 1 | _ | |a Sauer, Dirk Uwe |0 P:(DE-Juel1)172625 |b 4 |
700 | 1 | _ | |a Li, Weihan |0 0000-0002-2916-3968 |b 5 |e Corresponding author |
773 | _ | _ | |a 10.1016/j.xcrp.2023.101720 |g Vol. 4, no. 12, p. 101720 - |0 PERI:(DE-600)3015727-4 |n 12 |p 101720 - |t Cell reports / Physical science |v 4 |y 2023 |x 2666-3864 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1024892/files/Large-scale%20field%20data-based%20battery%20aging%20prediction%20driven%20by%20statistical%20features%20and%20machine%20learning.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1024892/files/Large-scale%20field%20data-based%20battery%20aging%20prediction%20driven%20by%20statistical%20features%20and%20machine%20learning.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1024892/files/Large-scale%20field%20data-based%20battery%20aging%20prediction%20driven%20by%20statistical%20features%20and%20machine%20learning.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1024892/files/Large-scale%20field%20data-based%20battery%20aging%20prediction%20driven%20by%20statistical%20features%20and%20machine%20learning.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1024892/files/Large-scale%20field%20data-based%20battery%20aging%20prediction%20driven%20by%20statistical%20features%20and%20machine%20learning.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:1024892 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)172625 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1223 |x 0 |
914 | 1 | _ | |y 2024 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-27 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CELL REP PHYS SCI : 2022 |d 2023-10-27 |
915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CELL REP PHYS SCI : 2022 |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T08:54:40Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T08:54:40Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-27 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-05-02T08:54:40Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|