001024893 001__ 1024893
001024893 005__ 20250203103230.0
001024893 0247_ $$2doi$$a10.1149/MA2023-02371710mtgabs
001024893 0247_ $$2ISSN$$a1091-8213
001024893 0247_ $$2ISSN$$a2151-2043
001024893 037__ $$aFZJ-2024-02544
001024893 082__ $$a540
001024893 1001_ $$0P:(DE-Juel1)192502$$aEppler, Michael$$b0$$ufzj
001024893 1112_ $$aThe Electrochemical Society$$cSan Francisco$$d2024-05-26 - 2024-05-30$$wUSA
001024893 245__ $$aParameterization and Validation of a 2-Dimensional, Transient, Two-Phase MEA Model Capable of Simulating Electrochemical Impedance Spectra
001024893 260__ $$c2023
001024893 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1712733994_16562
001024893 3367_ $$033$$2EndNote$$aConference Paper
001024893 3367_ $$2BibTeX$$aINPROCEEDINGS
001024893 3367_ $$2DRIVER$$aconferenceObject
001024893 3367_ $$2DataCite$$aOutput Types/Conference Abstract
001024893 3367_ $$2ORCID$$aOTHER
001024893 520__ $$aProton exchange membrane fuel cells (PEMFC) are promising energy converters, offering both sustainability and efficiency. Achieving optimal performance, however, requires a deep understanding of the underlying cause-effect relationships within the functional layers. One effective approach for validating models that capture the complex physics of PEMFC is through differential cells, which reduce computational effort by allowing along-the-channel-effects to be discarded [1,2].In this study, we present a 2-dimensional, transient, non-isothermal PEMFC model that enables the disentanglement of loss contributions, facilitating effective material screening. Our model accounts for multiphase transport to provide insights into water management and mass transport. To ensure robust parameterization, we conducted a multitude of both ex-situ and in-situ experiments, reducing our reliance on often-contradictory literature data [3].We fitted our model to a wide range of polarization curves obtained under operating conditions spanning temperatures of 50-80 °C and relative humidities of 40-100 %. Notably, our model is able to simulate impedance spectra, which enables the disentanglement of processes with different time constants [4]. This approach provides a unique opportunity to study the electrochemical behavior and offers a more profound understanding of PEMFC performance limitations. The thorough parameterization process and validation against a broad range of operating conditions and impedance spectra render our model reliable and effective for industry professionals and researchers. We also highlight shortcomings and physics aspects that require further research to deepen insights and enable faster industrialization cycles.References[1] Gerling, C., Hanauer, M., Berner, U., & Friedrich, K. A. (2022). PEM single cells under differential conditions: full factorial parameterization of the ORR and HOR kinetics and loss analysis. Journal of The Electrochemical Society, 169(1), 014503.[2] Pant, L. M., Stewart, S., Craig, N., & Weber, A. Z. (2021). Critical Parameter Identification of Fuel-Cell Models Using Sensitivity Analysis. Journal of the Electrochemical Society, 168(7), 074501.[3] Vetter, R., & Schumacher, J. O. (2019). Experimental parameter uncertainty in proton exchange membrane fuel cell modeling. Part I: Scatter in material parameterization. Journal of Power Sources, 438, 227018.[4] Gerling, C., Hanauer, M., Berner, U., & Friedrich, K. A. (2023). Experimental and Numerical Investigation of the Low-Frequency Inductive Features in Differential PEMFCs: Ionomer Humidification and Platinum Oxide Effects. Journal of The Electrochemical Society.
001024893 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001024893 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024893 7001_ $$0P:(DE-HGF)0$$aHanauer, Matthias$$b1
001024893 7001_ $$0P:(DE-HGF)0$$aGerling, Christophe$$b2
001024893 7001_ $$0P:(DE-HGF)0$$aBerner, Ulrich$$b3
001024893 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael$$b4
001024893 773__ $$0PERI:(DE-600)2438749-6$$a10.1149/MA2023-02371710mtgabs$$gVol. MA2023-02, no. 37, p. 1710 - 1710$$x2151-2043$$y2023
001024893 8564_ $$uhttps://iopscience.iop.org/article/10.1149/MA2023-02371710mtgabs
001024893 909CO $$ooai:juser.fz-juelich.de:1024893$$pVDB
001024893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192502$$aForschungszentrum Jülich$$b0$$kFZJ
001024893 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b4$$kFZJ
001024893 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001024893 9141_ $$y2024
001024893 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
001024893 980__ $$aabstract
001024893 980__ $$aVDB
001024893 980__ $$aI:(DE-Juel1)IEK-13-20190226
001024893 980__ $$aUNRESTRICTED
001024893 981__ $$aI:(DE-Juel1)IET-3-20190226