001024896 001__ 1024896 001024896 005__ 20250204113832.0 001024896 0247_ $$2doi$$a10.1002/smll.202305203 001024896 0247_ $$2ISSN$$a1613-6810 001024896 0247_ $$2ISSN$$a1613-6829 001024896 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02547 001024896 0247_ $$2pmid$$a37797185 001024896 0247_ $$2WOS$$aWOS:001080896600001 001024896 037__ $$aFZJ-2024-02547 001024896 082__ $$a620 001024896 1001_ $$00009-0009-5449-0213$$aStuckenberg, Silvan$$b0 001024896 245__ $$aInfluence of LiNO 3 on the Lithium Metal Deposition Behavior in Carbonate‐Based Liquid Electrolytes and on the Electrochemical Performance in Zero‐Excess Lithium Metal Batteries 001024896 260__ $$aWeinheim$$bWiley-VCH$$c2024 001024896 3367_ $$2DRIVER$$aarticle 001024896 3367_ $$2DataCite$$aOutput Types/Journal article 001024896 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712733533_14826 001024896 3367_ $$2BibTeX$$aARTICLE 001024896 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001024896 3367_ $$00$$2EndNote$$aJournal Article 001024896 500__ $$aUnterstützt durch BMBF Grant: ProLiFest (03XP0253A) 001024896 520__ $$aContinuous lithium (Li) depletion shadows the increase in energy density and safety properties promised by zero-excess lithium metal batteries (ZELMBs). Guiding the Li deposits toward more homogeneous and denser lithium morphology results in improved electrochemical performance. Herein, a lithium nitrate (LiNO3) enriched separator that improves the morphology of the Li deposits and facilitates the formation of an inorganic-rich solid–electrolyte interphase (SEI) resulting in an extended cycle life in Li||Li-cells as well as an increase of the Coulombic efficiency in Cu||Li-cells is reported. Using a LiNi0.6Co0.2Mn0.2O2 positive electrode in NCM622||Cu-cells, a carbonate-based electrolyte, and a LiNO3 enriched separator, an extension of the cycle life by more than 50 cycles with a moderate capacity fading compared to the unmodified separator is obtained. The relative constant level of LiNO3 in the electrolyte, maintained by the LiNO3 enriched separator throughout the cycling process stems at the origin of the improved performance. Ion chromatography measurements carried out at different cycles support the proposed mechanism of a slow and constant release of LiNO3 from the separator. The results indicate that the strategy of using a LiNO3 enriched separator instead of LiNO3 as a sacrificial electrolyte additive can improve the performance of ZELMBs further by maintaining a compact and thus stable SEI layer on Li deposits. 001024896 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0 001024896 536__ $$0G:(BMBF)13XP0258B$$aMEET HiEnD III - Materials and Components to Meet High Energy Density Batteries (13XP0258B)$$c13XP0258B$$x1 001024896 536__ $$0G:(GEPRIS)509322222$$aDFG project 509322222 - Struktur, Dynamik und elektrochemische Stabilität von konzentrierten Elektrolyten in begrenzten Umgebungen (509322222)$$c509322222$$x2 001024896 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001024896 7001_ $$00000-0002-9741-2989$$aBela, Marlena Maria$$b1 001024896 7001_ $$00009-0001-5528-3322$$aLechtenfeld, Christian-Timo$$b2 001024896 7001_ $$00000-0001-5772-2176$$aMense, Maximilian$$b3 001024896 7001_ $$00000-0003-0193-1088$$aKüpers, Verena$$b4 001024896 7001_ $$00000-0002-9197-3216$$aIngber, Tjark Thorben Klaus$$b5 001024896 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b6 001024896 7001_ $$0P:(DE-Juel1)195878$$aStan, Marian Cristian$$b7$$eCorresponding author 001024896 773__ $$0PERI:(DE-600)2168935-0$$a10.1002/smll.202305203$$gVol. 20, no. 6, p. 2305203$$n6$$p2305203$$tSmall$$v20$$x1613-6810$$y2024 001024896 8564_ $$uhttps://juser.fz-juelich.de/record/1024896/files/Small%20-%202023%20-%20Stuckenberg%20-%20Influence%20of%20LiNO3%20on%20the%20Lithium%20Metal%20Deposition%20Behavior%20in%20Carbonate%E2%80%90Based%20Liquid.pdf$$yOpenAccess 001024896 8564_ $$uhttps://juser.fz-juelich.de/record/1024896/files/Small%20-%202023%20-%20Stuckenberg%20-%20Influence%20of%20LiNO3%20on%20the%20Lithium%20Metal%20Deposition%20Behavior%20in%20Carbonate%E2%80%90Based%20Liquid.gif?subformat=icon$$xicon$$yOpenAccess 001024896 8564_ $$uhttps://juser.fz-juelich.de/record/1024896/files/Small%20-%202023%20-%20Stuckenberg%20-%20Influence%20of%20LiNO3%20on%20the%20Lithium%20Metal%20Deposition%20Behavior%20in%20Carbonate%E2%80%90Based%20Liquid.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 001024896 8564_ $$uhttps://juser.fz-juelich.de/record/1024896/files/Small%20-%202023%20-%20Stuckenberg%20-%20Influence%20of%20LiNO3%20on%20the%20Lithium%20Metal%20Deposition%20Behavior%20in%20Carbonate%E2%80%90Based%20Liquid.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 001024896 8564_ $$uhttps://juser.fz-juelich.de/record/1024896/files/Small%20-%202023%20-%20Stuckenberg%20-%20Influence%20of%20LiNO3%20on%20the%20Lithium%20Metal%20Deposition%20Behavior%20in%20Carbonate%E2%80%90Based%20Liquid.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 001024896 909CO $$ooai:juser.fz-juelich.de:1024896$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 001024896 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b6$$kFZJ 001024896 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)195878$$aForschungszentrum Jülich$$b7$$kFZJ 001024896 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0 001024896 9141_ $$y2024 001024896 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-25 001024896 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001024896 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-10-25$$wger 001024896 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-25 001024896 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001024896 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSMALL : 2022$$d2024-12-27 001024896 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-27 001024896 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-27 001024896 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-27 001024896 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-27 001024896 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-27 001024896 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bSMALL : 2022$$d2024-12-27 001024896 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 001024896 9801_ $$aFullTexts 001024896 980__ $$ajournal 001024896 980__ $$aVDB 001024896 980__ $$aUNRESTRICTED 001024896 980__ $$aI:(DE-Juel1)IEK-12-20141217 001024896 981__ $$aI:(DE-Juel1)IMD-4-20141217