001024897 001__ 1024897
001024897 005__ 20250203103503.0
001024897 0247_ $$2doi$$a10.1016/j.xcrp.2023.101596
001024897 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02548
001024897 0247_ $$2WOS$$aWOS:001114813200001
001024897 037__ $$aFZJ-2024-02548
001024897 082__ $$a530
001024897 1001_ $$00000-0002-6058-4058$$aSteininger, Valentin$$b0$$eCorresponding author
001024897 245__ $$aAutomated feature extraction to integrate field and laboratory data for aging diagnosis of automotive lithium-ion batteries
001024897 260__ $$a[New York, NY]$$bElsevier$$c2023
001024897 3367_ $$2DRIVER$$aarticle
001024897 3367_ $$2DataCite$$aOutput Types/Journal article
001024897 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712733607_14802
001024897 3367_ $$2BibTeX$$aARTICLE
001024897 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024897 3367_ $$00$$2EndNote$$aJournal Article
001024897 500__ $$aUnterstützt durch BMWK Grant ‘‘COBALT-P’’ (16BZF314C)
001024897 520__ $$aBattery aging diagnosis using field data readouts presents distinct challenges compared with using laboratory data. These challenges stem from the complexity of the data structure and potential inconsistencies in aging values obtained from variations in battery management system software versions. Consequently, the efficacy of a data-driven approach to identify pertinent aging features from field data becomes susceptible to these factors. In this work, we investigate different feature extraction methods and propose a framework designed to mitigate issues arising from compromised data quality. For this purpose, we leverage the benefits of precise laboratory aging data alongside authentic driving data acquired from a cohort exceeding 600,000 customers to improve the aging diagnosis of vehicle batteries. Moreover, we provide functional fitting of statistical data, addressing the challenges posed by incomplete data structures. We validate our methods by comparing them with state-of-the-art feature extraction techniques, yielding a 57% enhancement in aging estimation accuracy.
001024897 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024897 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024897 7001_ $$0P:(DE-HGF)0$$aRumpf, Katharina$$b1
001024897 7001_ $$0P:(DE-HGF)0$$aHüsson, Peter$$b2
001024897 7001_ $$0P:(DE-HGF)0$$aLi, Weihan$$b3
001024897 7001_ $$0P:(DE-Juel1)172625$$aSauer, Dirk Uwe$$b4
001024897 773__ $$0PERI:(DE-600)3015727-4$$a10.1016/j.xcrp.2023.101596$$gVol. 4, no. 10, p. 101596 -$$n10$$p101596 -$$tCell reports / Physical science$$v4$$x2666-3864$$y2023
001024897 8564_ $$uhttps://juser.fz-juelich.de/record/1024897/files/Automated%20feature%20extraction%20to%20integrate%20field%20and%20laboratory%20data%20for%20aging%20diagnosis%20of%20automotive%20lithium-ion%20batteries.pdf$$yOpenAccess
001024897 8564_ $$uhttps://juser.fz-juelich.de/record/1024897/files/Automated%20feature%20extraction%20to%20integrate%20field%20and%20laboratory%20data%20for%20aging%20diagnosis%20of%20automotive%20lithium-ion%20batteries.gif?subformat=icon$$xicon$$yOpenAccess
001024897 8564_ $$uhttps://juser.fz-juelich.de/record/1024897/files/Automated%20feature%20extraction%20to%20integrate%20field%20and%20laboratory%20data%20for%20aging%20diagnosis%20of%20automotive%20lithium-ion%20batteries.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024897 8564_ $$uhttps://juser.fz-juelich.de/record/1024897/files/Automated%20feature%20extraction%20to%20integrate%20field%20and%20laboratory%20data%20for%20aging%20diagnosis%20of%20automotive%20lithium-ion%20batteries.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024897 8564_ $$uhttps://juser.fz-juelich.de/record/1024897/files/Automated%20feature%20extraction%20to%20integrate%20field%20and%20laboratory%20data%20for%20aging%20diagnosis%20of%20automotive%20lithium-ion%20batteries.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024897 909CO $$ooai:juser.fz-juelich.de:1024897$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001024897 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172625$$aForschungszentrum Jülich$$b4$$kFZJ
001024897 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024897 9141_ $$y2024
001024897 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001024897 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
001024897 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-27
001024897 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001024897 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCELL REP PHYS SCI : 2022$$d2023-10-27
001024897 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCELL REP PHYS SCI : 2022$$d2023-10-27
001024897 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-05-02T08:54:40Z
001024897 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-05-02T08:54:40Z
001024897 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
001024897 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-10-27
001024897 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001024897 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024897 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-05-02T08:54:40Z
001024897 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-10-27
001024897 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-10-27
001024897 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-10-27
001024897 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001024897 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024897 9801_ $$aFullTexts
001024897 980__ $$ajournal
001024897 980__ $$aVDB
001024897 980__ $$aUNRESTRICTED
001024897 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024897 981__ $$aI:(DE-Juel1)IMD-4-20141217