001     1024897
005     20250203103503.0
024 7 _ |a 10.1016/j.xcrp.2023.101596
|2 doi
024 7 _ |a 10.34734/FZJ-2024-02548
|2 datacite_doi
024 7 _ |a WOS:001114813200001
|2 WOS
037 _ _ |a FZJ-2024-02548
082 _ _ |a 530
100 1 _ |a Steininger, Valentin
|0 0000-0002-6058-4058
|b 0
|e Corresponding author
245 _ _ |a Automated feature extraction to integrate field and laboratory data for aging diagnosis of automotive lithium-ion batteries
260 _ _ |a [New York, NY]
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712733607_14802
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Unterstützt durch BMWK Grant ‘‘COBALT-P’’ (16BZF314C)
520 _ _ |a Battery aging diagnosis using field data readouts presents distinct challenges compared with using laboratory data. These challenges stem from the complexity of the data structure and potential inconsistencies in aging values obtained from variations in battery management system software versions. Consequently, the efficacy of a data-driven approach to identify pertinent aging features from field data becomes susceptible to these factors. In this work, we investigate different feature extraction methods and propose a framework designed to mitigate issues arising from compromised data quality. For this purpose, we leverage the benefits of precise laboratory aging data alongside authentic driving data acquired from a cohort exceeding 600,000 customers to improve the aging diagnosis of vehicle batteries. Moreover, we provide functional fitting of statistical data, addressing the challenges posed by incomplete data structures. We validate our methods by comparing them with state-of-the-art feature extraction techniques, yielding a 57% enhancement in aging estimation accuracy.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Rumpf, Katharina
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hüsson, Peter
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Li, Weihan
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sauer, Dirk Uwe
|0 P:(DE-Juel1)172625
|b 4
773 _ _ |a 10.1016/j.xcrp.2023.101596
|g Vol. 4, no. 10, p. 101596 -
|0 PERI:(DE-600)3015727-4
|n 10
|p 101596 -
|t Cell reports / Physical science
|v 4
|y 2023
|x 2666-3864
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024897/files/Automated%20feature%20extraction%20to%20integrate%20field%20and%20laboratory%20data%20for%20aging%20diagnosis%20of%20automotive%20lithium-ion%20batteries.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024897/files/Automated%20feature%20extraction%20to%20integrate%20field%20and%20laboratory%20data%20for%20aging%20diagnosis%20of%20automotive%20lithium-ion%20batteries.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024897/files/Automated%20feature%20extraction%20to%20integrate%20field%20and%20laboratory%20data%20for%20aging%20diagnosis%20of%20automotive%20lithium-ion%20batteries.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024897/files/Automated%20feature%20extraction%20to%20integrate%20field%20and%20laboratory%20data%20for%20aging%20diagnosis%20of%20automotive%20lithium-ion%20batteries.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024897/files/Automated%20feature%20extraction%20to%20integrate%20field%20and%20laboratory%20data%20for%20aging%20diagnosis%20of%20automotive%20lithium-ion%20batteries.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024897
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172625
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-27
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CELL REP PHYS SCI : 2022
|d 2023-10-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CELL REP PHYS SCI : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2023-05-02T08:54:40Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2023-05-02T08:54:40Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2023-05-02T08:54:40Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21