| Home > Publications database > Automated feature extraction to integrate field and laboratory data for aging diagnosis of automotive lithium-ion batteries > print |
| 001 | 1024897 | ||
| 005 | 20250203103503.0 | ||
| 024 | 7 | _ | |a 10.1016/j.xcrp.2023.101596 |2 doi |
| 024 | 7 | _ | |a 10.34734/FZJ-2024-02548 |2 datacite_doi |
| 024 | 7 | _ | |a WOS:001114813200001 |2 WOS |
| 037 | _ | _ | |a FZJ-2024-02548 |
| 082 | _ | _ | |a 530 |
| 100 | 1 | _ | |a Steininger, Valentin |0 0000-0002-6058-4058 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Automated feature extraction to integrate field and laboratory data for aging diagnosis of automotive lithium-ion batteries |
| 260 | _ | _ | |a [New York, NY] |c 2023 |b Elsevier |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1712733607_14802 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a Unterstützt durch BMWK Grant ‘‘COBALT-P’’ (16BZF314C) |
| 520 | _ | _ | |a Battery aging diagnosis using field data readouts presents distinct challenges compared with using laboratory data. These challenges stem from the complexity of the data structure and potential inconsistencies in aging values obtained from variations in battery management system software versions. Consequently, the efficacy of a data-driven approach to identify pertinent aging features from field data becomes susceptible to these factors. In this work, we investigate different feature extraction methods and propose a framework designed to mitigate issues arising from compromised data quality. For this purpose, we leverage the benefits of precise laboratory aging data alongside authentic driving data acquired from a cohort exceeding 600,000 customers to improve the aging diagnosis of vehicle batteries. Moreover, we provide functional fitting of statistical data, addressing the challenges posed by incomplete data structures. We validate our methods by comparing them with state-of-the-art feature extraction techniques, yielding a 57% enhancement in aging estimation accuracy. |
| 536 | _ | _ | |a 1223 - Batteries in Application (POF4-122) |0 G:(DE-HGF)POF4-1223 |c POF4-122 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Rumpf, Katharina |0 P:(DE-HGF)0 |b 1 |
| 700 | 1 | _ | |a Hüsson, Peter |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Li, Weihan |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Sauer, Dirk Uwe |0 P:(DE-Juel1)172625 |b 4 |
| 773 | _ | _ | |a 10.1016/j.xcrp.2023.101596 |g Vol. 4, no. 10, p. 101596 - |0 PERI:(DE-600)3015727-4 |n 10 |p 101596 - |t Cell reports / Physical science |v 4 |y 2023 |x 2666-3864 |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/1024897/files/Automated%20feature%20extraction%20to%20integrate%20field%20and%20laboratory%20data%20for%20aging%20diagnosis%20of%20automotive%20lithium-ion%20batteries.pdf |
| 856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/1024897/files/Automated%20feature%20extraction%20to%20integrate%20field%20and%20laboratory%20data%20for%20aging%20diagnosis%20of%20automotive%20lithium-ion%20batteries.gif?subformat=icon |
| 856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/1024897/files/Automated%20feature%20extraction%20to%20integrate%20field%20and%20laboratory%20data%20for%20aging%20diagnosis%20of%20automotive%20lithium-ion%20batteries.jpg?subformat=icon-1440 |
| 856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/1024897/files/Automated%20feature%20extraction%20to%20integrate%20field%20and%20laboratory%20data%20for%20aging%20diagnosis%20of%20automotive%20lithium-ion%20batteries.jpg?subformat=icon-180 |
| 856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/1024897/files/Automated%20feature%20extraction%20to%20integrate%20field%20and%20laboratory%20data%20for%20aging%20diagnosis%20of%20automotive%20lithium-ion%20batteries.jpg?subformat=icon-640 |
| 909 | C | O | |o oai:juser.fz-juelich.de:1024897 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)172625 |
| 913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-122 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Elektrochemische Energiespeicherung |9 G:(DE-HGF)POF4-1223 |x 0 |
| 914 | 1 | _ | |y 2024 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2023-10-27 |
| 915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0 |0 LIC:(DE-HGF)CCBYNCND4 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b CELL REP PHYS SCI : 2022 |d 2023-10-27 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b CELL REP PHYS SCI : 2022 |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2023-05-02T08:54:40Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2023-05-02T08:54:40Z |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2023-10-27 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2023-10-27 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2023-05-02T08:54:40Z |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2023-10-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2023-10-27 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-12-20141217 |k IEK-12 |l Helmholtz-Institut Münster Ionenleiter für Energiespeicher |x 0 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-12-20141217 |
| 981 | _ | _ | |a I:(DE-Juel1)IMD-4-20141217 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|