001     1024900
005     20250203103302.0
024 7 _ |a 10.1016/j.jpowsour.2023.233499
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a WOS:001077457100001
|2 WOS
037 _ _ |a FZJ-2024-02550
082 _ _ |a 620
100 1 _ |a Faber, Matthias
|0 0000-0003-2617-743X
|b 0
|e Corresponding author
245 _ _ |a A method to determine the specific heat capacity of lithium-ion battery cells using thermal insulation
260 _ _ |a New York, NY [u.a.]
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1738569704_21854
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Unterstützt durch BMBF Projekt: SimBAS project (Grant No. 03XP0338B) und OSLiB project (Grant No. 03XP0330C)
520 _ _ |a Thermal simulations of lithium-ion batteries that contribute to improvements in the safety and lifetime of battery systems require precise thermal parameters, such as the specific heat capacity. In contrast to the vast number of lithium-ion batteries, the number of specific heat capacity results is very low. This work presents a new method for accurately and easily determining the specific heat capacity of battery cells of any form factor. Using an extruded polystyrene thermal resistor, temperature logging equipment, and two temperature chambers at different temperatures, the presented approach determines the specific heat capacity of cylindrical 18650 and 21700 cells, in addition to two pouch cells, through simple temperature changes. While the cylindrical cells have very similar specific heat capacities, both pouch cells have significantly higher specific heat capacities most likely due to their different material compositions. Linear approximations of the results agree well with a temperature sensitivity of all battery models between 1.6 and 2.0 per over the range of 0 to 40 . Compared to a reference material with a known specific heat capacity, validation measurements reveal an error between 1% and 3%.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Buitkamp, Oliver
|0 0009-0003-0006-5154
|b 1
700 1 _ |a Ritz, Simon
|0 0009-0006-4522-8326
|b 2
700 1 _ |a Börner, Martin
|0 0000-0003-3552-8377
|b 3
700 1 _ |a Berger, Jonathan
|0 0009-0003-6223-9383
|b 4
700 1 _ |a Friedrich, Julian
|b 5
700 1 _ |a Arzberger, Arno
|b 6
700 1 _ |a Sauer, Dirk Uwe
|0 P:(DE-Juel1)172625
|b 7
773 _ _ |a 10.1016/j.jpowsour.2023.233499
|g Vol. 583, p. 233499 -
|0 PERI:(DE-600)1491915-1
|p 233499 -
|t Journal of power sources
|v 583
|y 2023
|x 0378-7753
856 4 _ |u https://juser.fz-juelich.de/record/1024900/files/A%20method%20to%20determine%20the%20specific%20heat%20capacity%20of%20lithium-ion%20battery%20cells%20using%20thermal%20insulation.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024900/files/A%20method%20to%20determine%20the%20specific%20heat%20capacity%20of%20lithium-ion%20battery%20cells%20using%20thermal%20insulation.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024900/files/A%20method%20to%20determine%20the%20specific%20heat%20capacity%20of%20lithium-ion%20battery%20cells%20using%20thermal%20insulation.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024900/files/A%20method%20to%20determine%20the%20specific%20heat%20capacity%20of%20lithium-ion%20battery%20cells%20using%20thermal%20insulation.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024900/files/A%20method%20to%20determine%20the%20specific%20heat%20capacity%20of%20lithium-ion%20battery%20cells%20using%20thermal%20insulation.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:1024900
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)172625
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2022
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-08-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-08-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2022
|d 2023-08-28
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21