001024901 001__ 1024901 001024901 005__ 20250203103233.0 001024901 0247_ $$2doi$$a10.5599/jese.1724 001024901 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02551 001024901 0247_ $$2WOS$$aWOS:001049805300002 001024901 037__ $$aFZJ-2024-02551 001024901 082__ $$a540 001024901 1001_ $$0P:(DE-Juel1)181055$$aStolz, Lukas$$b0$$ufzj 001024901 245__ $$aPerspective on the mechanism of mass transport-induced (tip-growing) Li dendrite formation by comparing conventional liquid organic solvent with solid polymer-based electrolytes 001024901 260__ $$aMontreal$$b[Verlag nicht ermittelbar]$$c2023 001024901 3367_ $$2DRIVER$$aarticle 001024901 3367_ $$2DataCite$$aOutput Types/Journal article 001024901 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712736980_24403 001024901 3367_ $$2BibTeX$$aARTICLE 001024901 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001024901 3367_ $$00$$2EndNote$$aJournal Article 001024901 520__ $$aA major challenge of Li metal electrodes is the growth of high surface area lithium during Li deposition with a variety of possible shapes and growing mechanisms. They are reactive and lead to active lithium losses, electrolyte depletion and safety concerns due to a potential risk of short-circuits and thermal runaway. This work focuses on the mechanism of tip-growing Li dendrite as a particular high surface area lithium morphology. Its formation mechanism is well-known and is triggered during concentration polarization, i.e. during mass (Li+) transport limitations, which has been thoroughly investigated in literature with liquid electrolytes. This work aims to give a stimulating perspective on this formation mechanism by considering solid polymer electrolytes. The in-here shown absence of the characteristic “voltage noise” immediately after complete concentration polarization, being an indicator for tip-growing dendritic growth, rules out the occurrence of the particular tip-growing morphology for solid polymer electrolytes under the specific electrochemical conditions. The generally poorer kinetics of solid polymer electrolytes compared to liquid electrolytes imply lower limiting currents, i.e. lower currents to realize complete concentration polarization. Hence, this longer-lasting Li-deposition times in solid polymer electrolytes are assumed to prevent tip-growing mechanism via timely enabling solid electrolyte interphase formation on fresh Li deposits, while, as stated in previous literature, in liquid electrolytes, Li dendrite tip-growth process is faster than solid electrolyte interphase formation kinetics. It can be reasonably concluded that tip-growing Li dendrites are in general practically unlikely for both, (i) the lower conducting electrolytes like solid polymer electrolytes due to enabling solid electrolyte interphase formation and (ii) good-conducting electrolytes like liquids due to an impractically high current required for concentration polarization. 001024901 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0 001024901 536__ $$0G:(DE-82)BMBF-03XP0084B$$aBMBF 03XP0084B - MEET Hi-EnD II - Weiterentwicklung und Untersuchung von Materialien auf metallischen Anodenwerkstoffen (BMBF-03XP0084B)$$cBMBF-03XP0084B$$x1 001024901 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001024901 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b1$$ufzj 001024901 7001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b2$$eCorresponding author 001024901 773__ $$0PERI:(DE-600)2688382-X$$a10.5599/jese.1724$$gVol. 13, no. 5, p. 715 - 724$$n5$$p715 - 724$$tJournal of electrochemical science and engineering$$v13$$x1847-9286$$y2023 001024901 8564_ $$uhttps://juser.fz-juelich.de/record/1024901/files/jESE_V13_No5_715-724.pdf$$yOpenAccess 001024901 8564_ $$uhttps://juser.fz-juelich.de/record/1024901/files/jESE_V13_No5_715-724.gif?subformat=icon$$xicon$$yOpenAccess 001024901 8564_ $$uhttps://juser.fz-juelich.de/record/1024901/files/jESE_V13_No5_715-724.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 001024901 8564_ $$uhttps://juser.fz-juelich.de/record/1024901/files/jESE_V13_No5_715-724.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 001024901 8564_ $$uhttps://juser.fz-juelich.de/record/1024901/files/jESE_V13_No5_715-724.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 001024901 909CO $$ooai:juser.fz-juelich.de:1024901$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 001024901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181055$$aForschungszentrum Jülich$$b0$$kFZJ 001024901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b1$$kFZJ 001024901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b2$$kFZJ 001024901 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0 001024901 9141_ $$y2024 001024901 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-26 001024901 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001024901 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2023-10-26 001024901 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SCI EN : 2022$$d2023-10-26 001024901 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-10-17T11:13:03Z 001024901 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-10-17T11:13:03Z 001024901 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-26 001024901 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2023-10-26 001024901 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001024901 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2022-10-17T11:13:03Z 001024901 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-26 001024901 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0 001024901 9801_ $$aFullTexts 001024901 980__ $$ajournal 001024901 980__ $$aVDB 001024901 980__ $$aUNRESTRICTED 001024901 980__ $$aI:(DE-Juel1)IEK-12-20141217 001024901 981__ $$aI:(DE-Juel1)IMD-4-20141217