001     1024901
005     20250203103233.0
024 7 _ |a 10.5599/jese.1724
|2 doi
024 7 _ |a 10.34734/FZJ-2024-02551
|2 datacite_doi
024 7 _ |a WOS:001049805300002
|2 WOS
037 _ _ |a FZJ-2024-02551
082 _ _ |a 540
100 1 _ |a Stolz, Lukas
|0 P:(DE-Juel1)181055
|b 0
|u fzj
245 _ _ |a Perspective on the mechanism of mass transport-induced (tip-growing) Li dendrite formation by comparing conventional liquid organic solvent with solid polymer-based electrolytes
260 _ _ |a Montreal
|c 2023
|b [Verlag nicht ermittelbar]
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712736980_24403
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A major challenge of Li metal electrodes is the growth of high surface area lithium during Li deposition with a variety of possible shapes and growing mechanisms. They are reactive and lead to active lithium losses, electrolyte depletion and safety concerns due to a potential risk of short-circuits and thermal runaway. This work focuses on the mechanism of tip-growing Li dendrite as a particular high surface area lithium morphology. Its formation mechanism is well-known and is triggered during concentration polarization, i.e. during mass (Li+) transport limitations, which has been thoroughly investigated in literature with liquid electrolytes. This work aims to give a stimulating perspective on this formation mechanism by considering solid polymer electrolytes. The in-here shown absence of the characteristic “voltage noise” immediately after complete concentration polarization, being an indicator for tip-growing dendritic growth, rules out the occurrence of the particular tip-growing morphology for solid polymer electrolytes under the specific electrochemical conditions. The generally poorer kinetics of solid polymer electrolytes compared to liquid electrolytes imply lower limiting currents, i.e. lower currents to realize complete concen­tration polarization. Hence, this longer-lasting Li-deposition times in solid polymer electro­lytes are assumed to prevent tip-growing mechanism via timely enabling solid electrolyte interphase formation on fresh Li deposits, while, as stated in previous literature, in liquid electrolytes, Li dendrite tip-growth process is faster than solid electrolyte interphase forma­tion kinetics. It can be reasonably concluded that tip-growing Li dendrites are in general practically unlikely for both, (i) the lower conducting electrolytes like solid polymer electro­lytes due to enabling solid electrolyte interphase formation and (ii) good-conducting electro­lytes like liquids due to an impractically high current required for concentration polarization.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a BMBF 03XP0084B - MEET Hi-EnD II - Weiterentwicklung und Untersuchung von Materialien auf metallischen Anodenwerkstoffen (BMBF-03XP0084B)
|0 G:(DE-82)BMBF-03XP0084B
|c BMBF-03XP0084B
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 1
|u fzj
700 1 _ |a Kasnatscheew, Johannes
|0 P:(DE-Juel1)171865
|b 2
|e Corresponding author
773 _ _ |a 10.5599/jese.1724
|g Vol. 13, no. 5, p. 715 - 724
|0 PERI:(DE-600)2688382-X
|n 5
|p 715 - 724
|t Journal of electrochemical science and engineering
|v 13
|y 2023
|x 1847-9286
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024901/files/jESE_V13_No5_715-724.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024901/files/jESE_V13_No5_715-724.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024901/files/jESE_V13_No5_715-724.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024901/files/jESE_V13_No5_715-724.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024901/files/jESE_V13_No5_715-724.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024901
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)181055
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171865
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2023-10-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ELECTROCHEM SCI EN : 2022
|d 2023-10-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-10-17T11:13:03Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-10-17T11:13:03Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2023-10-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2022-10-17T11:13:03Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-26
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21