001     1024908
005     20250203103204.0
024 7 _ |a 10.1016/j.solener.2023.03.029
|2 doi
024 7 _ |a 0038-092X
|2 ISSN
024 7 _ |a 1471-1257
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02558
|2 datacite_doi
024 7 _ |a WOS:001007424800001
|2 WOS
037 _ _ |a FZJ-2024-02558
082 _ _ |a 530
100 1 _ |a Schulte, Jonathan
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Forecast-based charging strategy to prolong the lifetime of lithium-ion batteries in standalone PV battery systems in Sub-Saharan Africa
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712737516_24399
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Standalone PV battery systems have great potential to power the one billion people worldwide who lack access to electricity. Due to remoteness and poverty, durable and cheap systems are required for a broad range of applications. However, today’s PV battery systems do not yet fully meet this requirement. Especially batteries still prove to be a hindrance, as they represent the most expensive and fastest-aging component in a PV battery system. This work aims to address this by prolonging battery life. For this purpose, a forecast-based charging strategy was developed. As lithium-ion batteries age slower in a low state-of-charge, the goal of the operation strategy is to only charge the battery as much as needed. The impact of the proposed charging strategy is examined in a case study using one year of historical data of 14 standalone systems in Nigeria. It was found that the proposed operation strategy could reduce the average battery state-of-charge by around 20% without causing power outages for the mini-grids. This would significantly extend the life of the battery and ultimately lead to a more durable and cheaper operation of standalone PV battery systems.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Figgener, Jan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Woerner, Philipp
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Broering, Hendrik
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Sauer, Dirk Uwe
|0 P:(DE-Juel1)172625
|b 4
773 _ _ |a 10.1016/j.solener.2023.03.029
|g Vol. 258, p. 130 - 142
|0 PERI:(DE-600)2015126-3
|p 130 - 142
|t Solar energy
|v 258
|y 2023
|x 0038-092X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024908/files/2305.08967.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024908/files/2305.08967.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024908/files/2305.08967.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024908/files/2305.08967.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024908/files/2305.08967.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024908
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)172625
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2023-10-22
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOL ENERGY : 2022
|d 2023-10-22
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-22
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2023-10-22
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SOL ENERGY : 2022
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-22
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21