001024909 001__ 1024909
001024909 005__ 20250203103322.0
001024909 0247_ $$2doi$$a10.1039/D3TA00440F
001024909 0247_ $$2ISSN$$a2050-7488
001024909 0247_ $$2ISSN$$a2050-7496
001024909 0247_ $$2WOS$$aWOS:000969590000001
001024909 037__ $$aFZJ-2024-02559
001024909 082__ $$a530
001024909 1001_ $$0P:(DE-HGF)0$$aSchuett, Judith$$b0
001024909 245__ $$aPredicting the Na + ion transport properties of NaSICON materials using density functional theory and Kinetic Monte Carlo
001024909 260__ $$aLondon ˜[u.a.]œ$$bRSC$$c2023
001024909 3367_ $$2DRIVER$$aarticle
001024909 3367_ $$2DataCite$$aOutput Types/Journal article
001024909 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712737598_24400
001024909 3367_ $$2BibTeX$$aARTICLE
001024909 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024909 3367_ $$00$$2EndNote$$aJournal Article
001024909 520__ $$aThe efficiency of all-solid-state Na+ ion batteries crucially depends on the applied electrolyte, among which sodium super ionic conductors (NaSICONs) show high ionic conductivities. However, the experimental data on ionic conductivities available in the literature vary by several orders of magnitude depending on composition and sample preparation. Hence, a comprehensive understanding of Na+ transport properties is still lacking. In this study, we investigate the multi-cationic NaSICONs Na1+xM2SixP3−xO12 (with M = Zr4+, Hf4+, Sn4+, and 0 ≤ x ≤ 3) by combining state-of-the-art computational tools, namely density functional theory calculations to analyse the structure at the atomic level and Kinetic Monte Carlo simulations to study the ion transport on the macroscopic level. The results show that there is no simple correlation between structural properties and the Na+ ion transport as often described in the literature. Rather the interplay of the ratio of unoccupied to occupied charge carrier sites, interactions between Na+ ions and adjacent cations, and Na+ migration barriers, which are influenced by both the M-cation and the degree of substitution, must be considered. Our study provides a detailed picture of the complex ion transport in NaSICONs of variable composition.
001024909 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024909 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024909 7001_ $$0P:(DE-HGF)0$$aKuhn, Antonia S.$$b1
001024909 7001_ $$0P:(DE-Juel1)167130$$aNeitzel-Grieshammer, Steffen$$b2$$eCorresponding author
001024909 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/D3TA00440F$$gVol. 11, no. 16, p. 9160 - 9177$$n16$$p9160 - 9177$$tJournal of materials chemistry / A$$v11$$x2050-7488$$y2023
001024909 8564_ $$uhttps://juser.fz-juelich.de/record/1024909/files/Predicting%20the%20Na%2B%20ion%20transport%20properties%20of%20NaSICON%20materials%20using%20density%20functional%20theory%20and%20Kinetic%20Monte%20Carlo.pdf$$yRestricted
001024909 8564_ $$uhttps://juser.fz-juelich.de/record/1024909/files/Predicting%20the%20Na%2B%20ion%20transport%20properties%20of%20NaSICON%20materials%20using%20density%20functional%20theory%20and%20Kinetic%20Monte%20Carlo.gif?subformat=icon$$xicon$$yRestricted
001024909 8564_ $$uhttps://juser.fz-juelich.de/record/1024909/files/Predicting%20the%20Na%2B%20ion%20transport%20properties%20of%20NaSICON%20materials%20using%20density%20functional%20theory%20and%20Kinetic%20Monte%20Carlo.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001024909 8564_ $$uhttps://juser.fz-juelich.de/record/1024909/files/Predicting%20the%20Na%2B%20ion%20transport%20properties%20of%20NaSICON%20materials%20using%20density%20functional%20theory%20and%20Kinetic%20Monte%20Carlo.jpg?subformat=icon-180$$xicon-180$$yRestricted
001024909 8564_ $$uhttps://juser.fz-juelich.de/record/1024909/files/Predicting%20the%20Na%2B%20ion%20transport%20properties%20of%20NaSICON%20materials%20using%20density%20functional%20theory%20and%20Kinetic%20Monte%20Carlo.jpg?subformat=icon-640$$xicon-640$$yRestricted
001024909 909CO $$ooai:juser.fz-juelich.de:1024909$$pVDB
001024909 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167130$$aForschungszentrum Jülich$$b2$$kFZJ
001024909 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024909 9141_ $$y2024
001024909 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-23$$wger
001024909 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001024909 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001024909 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001024909 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001024909 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001024909 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-23
001024909 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
001024909 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2022$$d2023-08-23
001024909 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001024909 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER CHEM A : 2022$$d2023-08-23
001024909 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024909 980__ $$ajournal
001024909 980__ $$aVDB
001024909 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024909 980__ $$aUNRESTRICTED
001024909 981__ $$aI:(DE-Juel1)IMD-4-20141217