001024911 001__ 1024911
001024911 005__ 20250203103205.0
001024911 0247_ $$2doi$$a10.1039/D3TA00097D
001024911 0247_ $$2ISSN$$a2050-7488
001024911 0247_ $$2ISSN$$a2050-7496
001024911 0247_ $$2WOS$$aWOS:000955095100001
001024911 037__ $$aFZJ-2024-02561
001024911 082__ $$a530
001024911 1001_ $$00000-0002-7637-1356$$aAdhitama, Egy$$b0$$eCorresponding author
001024911 245__ $$aOn the direct correlation between the copper current collector surface area and ‘dead Li’ formation in zero-excess Li metal batteries
001024911 260__ $$aLondon ˜[u.a.]œ$$bRSC$$c2023
001024911 3367_ $$2DRIVER$$aarticle
001024911 3367_ $$2DataCite$$aOutput Types/Journal article
001024911 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712740549_24403
001024911 3367_ $$2BibTeX$$aARTICLE
001024911 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024911 3367_ $$00$$2EndNote$$aJournal Article
001024911 520__ $$aIn ‘zero-excess’ (often called ‘anode-free’) lithium metal batteries (ZE-LMBs), three-dimensional (3D) current collectors (CC) with a high surface area have been reported to effectively reduce the local current density and minimize the electronically and/or ionically isolated Li metal, so-called ‘dead Li’. In most of the published works on 3D CCs for ZE-LMBs, the discussion has oftentimes primarily emphasized the relationship between the functionality of the 3D surface structure and its effect on enhanced electrochemical performance. Therefore, it is important to take a deeper look at this relationship by controlling the surface features and surface chemistry of CCs. In this work, the direct correlation between the surface area of CCs and ‘dead Li’ is thoroughly evaluated. The Li deposition behavior at the entire CC is also elucidated. A fair comparison is maintained by precisely controlling surface features and surface chemistry of the 3D copper CC which is realized by femtosecond-laser-ablation. ‘Dead Li’ is accurately quantified by gas chromatography coupled with a barrier discharge ionization detector. This study shall shed light on a deeper understanding of the correlation between surface area and ‘dead Li’ to pave the way for the application of ZE-LMBs.
001024911 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024911 536__ $$0G:(EU-Grant)608491$$aBACCARA - Battery and superCapacitor ChARActerization and testing (608491)$$c608491$$fFP7-ENERGY-2013-1$$x1
001024911 588__ $$aDataset connected to DataCite
001024911 7001_ $$00000-0001-9829-0971$$aRefino, Andam Deatama$$b1
001024911 7001_ $$00000-0002-8696-0429$$aBrake, Tobias$$b2
001024911 7001_ $$0P:(DE-Juel1)184721$$aPleie, Jan$$b3
001024911 7001_ $$0P:(DE-Juel1)185885$$aSchmidt, Christina$$b4$$ufzj
001024911 7001_ $$0P:(DE-HGF)0$$aDemelash, Feleke$$b5
001024911 7001_ $$0P:(DE-Juel1)181017$$aNeuhaus, Kerstin$$b6$$ufzj
001024911 7001_ $$0P:(DE-HGF)0$$aBornemann, Steffen$$b7
001024911 7001_ $$0P:(DE-HGF)0$$aWiemers-Meyer, Simon$$b8
001024911 7001_ $$0P:(DE-HGF)0$$aPeiner, Erwin$$b9
001024911 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b10$$ufzj
001024911 7001_ $$00000-0002-4522-3625$$aWasisto, Hutomo Suryo$$b11
001024911 7001_ $$0P:(DE-HGF)0$$aPlacke, Tobias$$b12
001024911 773__ $$0PERI:(DE-600)2702232-8$$a10.1039/D3TA00097D$$gVol. 11, no. 14, p. 7724 - 7734$$n14$$p7724 - 7734$$tJournal of materials chemistry / A$$v11$$x2050-7488$$y2023
001024911 8564_ $$uhttps://juser.fz-juelich.de/record/1024911/files/On%20the%20direct%20correlation%20between%20the%20copper%20current%20collector%20surface%20area%20and%20%E2%80%98dead%20Li%E2%80%99%20formation%20in%20zero-excess%20Li%20metal%20batteries.pdf$$yRestricted
001024911 8564_ $$uhttps://juser.fz-juelich.de/record/1024911/files/On%20the%20direct%20correlation%20between%20the%20copper%20current%20collector%20surface%20area%20and%20%E2%80%98dead%20Li%E2%80%99%20formation%20in%20zero-excess%20Li%20metal%20batteries.gif?subformat=icon$$xicon$$yRestricted
001024911 8564_ $$uhttps://juser.fz-juelich.de/record/1024911/files/On%20the%20direct%20correlation%20between%20the%20copper%20current%20collector%20surface%20area%20and%20%E2%80%98dead%20Li%E2%80%99%20formation%20in%20zero-excess%20Li%20metal%20batteries.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001024911 8564_ $$uhttps://juser.fz-juelich.de/record/1024911/files/On%20the%20direct%20correlation%20between%20the%20copper%20current%20collector%20surface%20area%20and%20%E2%80%98dead%20Li%E2%80%99%20formation%20in%20zero-excess%20Li%20metal%20batteries.jpg?subformat=icon-180$$xicon-180$$yRestricted
001024911 8564_ $$uhttps://juser.fz-juelich.de/record/1024911/files/On%20the%20direct%20correlation%20between%20the%20copper%20current%20collector%20surface%20area%20and%20%E2%80%98dead%20Li%E2%80%99%20formation%20in%20zero-excess%20Li%20metal%20batteries.jpg?subformat=icon-640$$xicon-640$$yRestricted
001024911 909CO $$ooai:juser.fz-juelich.de:1024911$$pec_fundedresources$$pVDB$$popenaire
001024911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185885$$aForschungszentrum Jülich$$b4$$kFZJ
001024911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181017$$aForschungszentrum Jülich$$b6$$kFZJ
001024911 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b10$$kFZJ
001024911 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024911 9141_ $$y2024
001024911 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2023-08-23$$wger
001024911 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-23
001024911 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-23
001024911 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-23
001024911 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-23
001024911 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-23
001024911 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-08-23
001024911 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-23
001024911 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM A : 2022$$d2023-08-23
001024911 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-23
001024911 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bJ MATER CHEM A : 2022$$d2023-08-23
001024911 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024911 980__ $$ajournal
001024911 980__ $$aVDB
001024911 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024911 980__ $$aUNRESTRICTED
001024911 981__ $$aI:(DE-Juel1)IMD-4-20141217