001024912 001__ 1024912
001024912 005__ 20250203103205.0
001024912 0247_ $$2doi$$a10.1016/j.etran.2023.100240
001024912 0247_ $$2WOS$$aWOS:000959469300001
001024912 037__ $$aFZJ-2024-02562
001024912 082__ $$a400
001024912 1001_ $$00000-0002-6058-4058$$aSteininger, Valentin$$b0$$eCorresponding author
001024912 245__ $$aCustomer-centric aging simulation for 48 V lithium-ion batteries in vehicle applications
001024912 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2023
001024912 3367_ $$2DRIVER$$aarticle
001024912 3367_ $$2DataCite$$aOutput Types/Journal article
001024912 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712739648_24399
001024912 3367_ $$2BibTeX$$aARTICLE
001024912 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024912 3367_ $$00$$2EndNote$$aJournal Article
001024912 520__ $$aIn the automotive industry, a battery management system’s state prediction algorithms can change during the development cycle of a car. Monitored aggregated customer data thus includes inconsistent state of health values which have been generated by different algorithms. To facilitate comparability over the collected data, databased models can be trained on selected input variables to provide reference state of health values. This study aims to generate virtual customer driving data of mild-hybrid electric vehicles using automotive simulation models and stochastic customer driving profiles in order to establish a simulation database for model training purposes on one hand and to conduct lifetime simulations for new vehicles in the market on the other. Mapping algorithms between load profile libraries and derived statistical features from a field customer database ensure a realistic representation of individual customer driving behavior. We validated our toolchain using collected trip data from a testing fleet and checked for statistical plausibility of the simulation data. Moreover, lifetime simulation results of selected customers show significant differences in aging implications due to individual driving behavior and environmental conditions. Therefore, during a 10-year simulation, the average aging rate per driven kilometer of an Asian customer is about 33% higher compared to a European customer.
001024912 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024912 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024912 7001_ $$0P:(DE-HGF)0$$aHüsson, Peter$$b1
001024912 7001_ $$0P:(DE-HGF)0$$aRumpf, Katharina$$b2
001024912 7001_ $$0P:(DE-Juel1)172625$$aSauer, Dirk Uwe$$b3
001024912 773__ $$0PERI:(DE-600)2981331-1$$a10.1016/j.etran.2023.100240$$gVol. 16, p. 100240 -$$p100240 -$$teTransportation$$v16$$x2590-1168$$y2023
001024912 8564_ $$uhttps://juser.fz-juelich.de/record/1024912/files/Customer-centric%20aging%20simulation%20for%2048%20V%20lithium-ion%20batteries%20in%20vehicle%20applications.pdf$$yRestricted
001024912 8564_ $$uhttps://juser.fz-juelich.de/record/1024912/files/Customer-centric%20aging%20simulation%20for%2048%20V%20lithium-ion%20batteries%20in%20vehicle%20applications.gif?subformat=icon$$xicon$$yRestricted
001024912 8564_ $$uhttps://juser.fz-juelich.de/record/1024912/files/Customer-centric%20aging%20simulation%20for%2048%20V%20lithium-ion%20batteries%20in%20vehicle%20applications.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001024912 8564_ $$uhttps://juser.fz-juelich.de/record/1024912/files/Customer-centric%20aging%20simulation%20for%2048%20V%20lithium-ion%20batteries%20in%20vehicle%20applications.jpg?subformat=icon-180$$xicon-180$$yRestricted
001024912 8564_ $$uhttps://juser.fz-juelich.de/record/1024912/files/Customer-centric%20aging%20simulation%20for%2048%20V%20lithium-ion%20batteries%20in%20vehicle%20applications.jpg?subformat=icon-640$$xicon-640$$yRestricted
001024912 909CO $$ooai:juser.fz-juelich.de:1024912$$pVDB
001024912 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172625$$aForschungszentrum Jülich$$b3$$kFZJ
001024912 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024912 9141_ $$y2024
001024912 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2023-10-27$$wger
001024912 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bETRANSPORTATION : 2022$$d2023-10-27
001024912 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-10-27
001024912 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-10-27
001024912 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-10-27
001024912 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-10-27
001024912 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-10-27
001024912 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2023-10-27
001024912 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bETRANSPORTATION : 2022$$d2023-10-27
001024912 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024912 980__ $$ajournal
001024912 980__ $$aVDB
001024912 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024912 980__ $$aUNRESTRICTED
001024912 981__ $$aI:(DE-Juel1)IMD-4-20141217