001     1024912
005     20250203103205.0
024 7 _ |a 10.1016/j.etran.2023.100240
|2 doi
024 7 _ |a WOS:000959469300001
|2 WOS
037 _ _ |a FZJ-2024-02562
082 _ _ |a 400
100 1 _ |a Steininger, Valentin
|0 0000-0002-6058-4058
|b 0
|e Corresponding author
245 _ _ |a Customer-centric aging simulation for 48 V lithium-ion batteries in vehicle applications
260 _ _ |a Amsterdam [u.a.]
|c 2023
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712739648_24399
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In the automotive industry, a battery management system’s state prediction algorithms can change during the development cycle of a car. Monitored aggregated customer data thus includes inconsistent state of health values which have been generated by different algorithms. To facilitate comparability over the collected data, databased models can be trained on selected input variables to provide reference state of health values. This study aims to generate virtual customer driving data of mild-hybrid electric vehicles using automotive simulation models and stochastic customer driving profiles in order to establish a simulation database for model training purposes on one hand and to conduct lifetime simulations for new vehicles in the market on the other. Mapping algorithms between load profile libraries and derived statistical features from a field customer database ensure a realistic representation of individual customer driving behavior. We validated our toolchain using collected trip data from a testing fleet and checked for statistical plausibility of the simulation data. Moreover, lifetime simulation results of selected customers show significant differences in aging implications due to individual driving behavior and environmental conditions. Therefore, during a 10-year simulation, the average aging rate per driven kilometer of an Asian customer is about 33% higher compared to a European customer.
536 _ _ |a 1223 - Batteries in Application (POF4-122)
|0 G:(DE-HGF)POF4-1223
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hüsson, Peter
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Rumpf, Katharina
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sauer, Dirk Uwe
|0 P:(DE-Juel1)172625
|b 3
773 _ _ |a 10.1016/j.etran.2023.100240
|g Vol. 16, p. 100240 -
|0 PERI:(DE-600)2981331-1
|p 100240 -
|t eTransportation
|v 16
|y 2023
|x 2590-1168
856 4 _ |u https://juser.fz-juelich.de/record/1024912/files/Customer-centric%20aging%20simulation%20for%2048%20V%20lithium-ion%20batteries%20in%20vehicle%20applications.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024912/files/Customer-centric%20aging%20simulation%20for%2048%20V%20lithium-ion%20batteries%20in%20vehicle%20applications.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024912/files/Customer-centric%20aging%20simulation%20for%2048%20V%20lithium-ion%20batteries%20in%20vehicle%20applications.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024912/files/Customer-centric%20aging%20simulation%20for%2048%20V%20lithium-ion%20batteries%20in%20vehicle%20applications.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024912/files/Customer-centric%20aging%20simulation%20for%2048%20V%20lithium-ion%20batteries%20in%20vehicle%20applications.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1024912
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)172625
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1223
|x 0
914 1 _ |y 2024
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2023-10-27
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ETRANSPORTATION : 2022
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2023-10-27
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ETRANSPORTATION : 2022
|d 2023-10-27
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21