001     1024913
005     20250203103205.0
024 7 _ |a 10.1002/smll.202207328
|2 doi
024 7 _ |a 1613-6810
|2 ISSN
024 7 _ |a 1613-6829
|2 ISSN
024 7 _ |a 10.34734/FZJ-2024-02563
|2 datacite_doi
024 7 _ |a 36799132
|2 pmid
024 7 _ |a WOS:000939488800001
|2 WOS
037 _ _ |a FZJ-2024-02563
082 _ _ |a 620
100 1 _ |a Ju, Xiaokang
|0 P:(DE-Juel1)176763
|b 0
245 _ _ |a Revealing the Effect of High Ni Content in Li‐Rich Cathode Materials: Mitigating Voltage Decay or Increasing Intrinsic Reactivity
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712739710_24399
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Unterstützt durch DFG, Projekt Li 2916/2-1
520 _ _ |a Li-rich layered oxides are considered as one of the most promising cathode materials for secondary lithium batteries due to their high specific capacities, but the issue of continuous voltage decay during cycling hinders their market entry. Increasing the Ni content in Li-rich materials is assumed to be an effective way to address this issue and attracts recent research interests. However, a high Ni content may induce increased intrinsic reactivity of materials, resulting in severe side reactions with the electrolyte. Thus, a comprehensive study to differentiate the two effects of the Ni content on the cell performance with Li-rich cathode is carried out in this work. Herein, it is demonstrated that a properly dosed amount of Ni can effectively suppress the voltage decay in Li-rich cathodes, while over-loading of Ni, on the contrary, can cause structural instability, Ni dissolution, and nonuniform Li deposition during cycling as well as severe oxygen loss. This work offers a deep understanding on the impacts of Ni content in Li-rich materials, which can be a good guidance for the future design of such cathodes for high energy density lithium batteries.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Hou, Xu
|b 1
700 1 _ |a Liu, Zhongqing
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Du, Leilei
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zhang, Li
|b 4
700 1 _ |a Xie, Tangtang
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Paillard, Elie
|0 P:(DE-Juel1)166311
|b 6
700 1 _ |a Wang, Taihong
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 8
|u fzj
700 1 _ |a Li, Jie
|0 P:(DE-Juel1)174577
|b 9
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/smll.202207328
|g Vol. 19, no. 20, p. 2207328
|0 PERI:(DE-600)2168935-0
|n 20
|p 2207328
|t Small
|v 19
|y 2023
|x 1613-6810
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1024913/files/Small%20-%202023%20-%20Ju%20-%20Revealing%20the%20Effect%20of%20High%20Ni%20Content%20in%20Li%E2%80%90Rich%20Cathode%20Materials%20Mitigating%20Voltage%20Decay%20or.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/1024913/files/Small%20-%202023%20-%20Ju%20-%20Revealing%20the%20Effect%20of%20High%20Ni%20Content%20in%20Li%E2%80%90Rich%20Cathode%20Materials%20Mitigating%20Voltage%20Decay%20or.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/1024913/files/Small%20-%202023%20-%20Ju%20-%20Revealing%20the%20Effect%20of%20High%20Ni%20Content%20in%20Li%E2%80%90Rich%20Cathode%20Materials%20Mitigating%20Voltage%20Decay%20or.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/1024913/files/Small%20-%202023%20-%20Ju%20-%20Revealing%20the%20Effect%20of%20High%20Ni%20Content%20in%20Li%E2%80%90Rich%20Cathode%20Materials%20Mitigating%20Voltage%20Decay%20or.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/1024913/files/Small%20-%202023%20-%20Ju%20-%20Revealing%20the%20Effect%20of%20High%20Ni%20Content%20in%20Li%E2%80%90Rich%20Cathode%20Materials%20Mitigating%20Voltage%20Decay%20or.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:1024913
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)174577
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-10-25
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SMALL : 2022
|d 2023-10-25
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-10-25
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-10-25
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b SMALL : 2022
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-10-25
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-10-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-10-25
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21