001024914 001__ 1024914
001024914 005__ 20250203103206.0
001024914 0247_ $$2doi$$a10.1002/batt.202200465
001024914 0247_ $$2WOS$$aWOS:000907979400001
001024914 037__ $$aFZJ-2024-02564
001024914 082__ $$a540
001024914 1001_ $$0P:(DE-HGF)0$$aTomar, Anubha$$b0
001024914 245__ $$aInsights in Utilizing NiCo 2 O 4 /Co 3 O 4 Nanowires as Anode Material in Lithium‐Ion Batteries
001024914 260__ $$aWeinheim$$bWiley-VCH$$c2023
001024914 3367_ $$2DRIVER$$aarticle
001024914 3367_ $$2DataCite$$aOutput Types/Journal article
001024914 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712739782_24399
001024914 3367_ $$2BibTeX$$aARTICLE
001024914 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024914 3367_ $$00$$2EndNote$$aJournal Article
001024914 520__ $$aIn this study, a facile and cost-effective hydrothermal approach is employed to synthesize a mesoporous NiCo2O4/Co3O4 nanocomposite with nanowire morphology by using polyvinyl pyrrolidone as structure-directing agent. The obtained NiCo2O4/Co3O4 nanocomposite shows better electrochemical performance than pure NiCo2O4 due to mainly two reasons: i) a strong synergistic effect between NiCo2O4 and Co3O4, which enhances the Li+ diffusion rate as well as lower the charge-transfer resistance, and ii) the involvement of Co3O4 to contribute to the total capacity due to its high electrochemical activity. However, the performance of a NiCo2O4/Co3O4 nanocomposite electrode starts degrading after 400 cycles while pure NiCo2O4 maintains steady performance. Since the NiCo2O4/Co3O4 nanocomposite sample shows high porosity, it is believed that the obtained nanowire morphology cannot tolerate volume variations, which are generally triggered off during repeated Li+ (de-)insertion at long-term cycling. Therefore, the obtained results bring new insights in terms that there is a sweet spot between Li+ diffusion and high porosity in utilizing Co3O4 within a nanocomposite. This study is of guidance to shed the light on the research of ternary transition metal oxide nanocomposite materials for lithium-ion batteries.
001024914 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024914 536__ $$0G:(EU-Grant)608491$$aBACCARA - Battery and superCapacitor ChARActerization and testing (608491)$$c608491$$fFP7-ENERGY-2013-1$$x1
001024914 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001024914 7001_ $$0P:(DE-HGF)0$$aAdhitama, Egy$$b1
001024914 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b2$$ufzj
001024914 7001_ $$0P:(DE-HGF)0$$aPlacke, Tobias$$b3
001024914 7001_ $$00000-0003-0299-4355$$aRai, Alok Kumar$$b4$$eCorresponding author
001024914 773__ $$0PERI:(DE-600)2897248-X$$a10.1002/batt.202200465$$gVol. 6, no. 3, p. e202200465$$n3$$pe202200465$$tBatteries & supercaps$$v6$$x2566-6223$$y2023
001024914 8564_ $$uhttps://juser.fz-juelich.de/record/1024914/files/Batteries%20Supercaps%20-%202022%20-%20Tomar%20-%20Insights%20in%20Utilizing%20NiCo2O4%20Co3O4%20Nanowires%20as%20Anode%20Material%20in%20Lithium%E2%80%90Ion.pdf$$yRestricted
001024914 8564_ $$uhttps://juser.fz-juelich.de/record/1024914/files/Batteries%20Supercaps%20-%202022%20-%20Tomar%20-%20Insights%20in%20Utilizing%20NiCo2O4%20Co3O4%20Nanowires%20as%20Anode%20Material%20in%20Lithium%E2%80%90Ion.gif?subformat=icon$$xicon$$yRestricted
001024914 8564_ $$uhttps://juser.fz-juelich.de/record/1024914/files/Batteries%20Supercaps%20-%202022%20-%20Tomar%20-%20Insights%20in%20Utilizing%20NiCo2O4%20Co3O4%20Nanowires%20as%20Anode%20Material%20in%20Lithium%E2%80%90Ion.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
001024914 8564_ $$uhttps://juser.fz-juelich.de/record/1024914/files/Batteries%20Supercaps%20-%202022%20-%20Tomar%20-%20Insights%20in%20Utilizing%20NiCo2O4%20Co3O4%20Nanowires%20as%20Anode%20Material%20in%20Lithium%E2%80%90Ion.jpg?subformat=icon-180$$xicon-180$$yRestricted
001024914 8564_ $$uhttps://juser.fz-juelich.de/record/1024914/files/Batteries%20Supercaps%20-%202022%20-%20Tomar%20-%20Insights%20in%20Utilizing%20NiCo2O4%20Co3O4%20Nanowires%20as%20Anode%20Material%20in%20Lithium%E2%80%90Ion.jpg?subformat=icon-640$$xicon-640$$yRestricted
001024914 909CO $$ooai:juser.fz-juelich.de:1024914$$pec_fundedresources$$pVDB$$popenaire
001024914 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b2$$kFZJ
001024914 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024914 9141_ $$y2024
001024914 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2023-08-25$$wger
001024914 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBATTERIES SUPERCAPS : 2022$$d2023-08-25
001024914 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2023-08-25
001024914 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2023-08-25
001024914 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2023-08-25
001024914 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2023-08-25
001024914 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2023-08-25
001024914 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2023-08-25
001024914 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2023-08-25
001024914 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bBATTERIES SUPERCAPS : 2022$$d2023-08-25
001024914 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024914 980__ $$ajournal
001024914 980__ $$aVDB
001024914 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024914 980__ $$aUNRESTRICTED
001024914 981__ $$aI:(DE-Juel1)IMD-4-20141217