001     1024914
005     20250203103206.0
024 7 _ |a 10.1002/batt.202200465
|2 doi
024 7 _ |a WOS:000907979400001
|2 WOS
037 _ _ |a FZJ-2024-02564
082 _ _ |a 540
100 1 _ |a Tomar, Anubha
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Insights in Utilizing NiCo 2 O 4 /Co 3 O 4 Nanowires as Anode Material in Lithium‐Ion Batteries
260 _ _ |a Weinheim
|c 2023
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1712739782_24399
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In this study, a facile and cost-effective hydrothermal approach is employed to synthesize a mesoporous NiCo2O4/Co3O4 nanocomposite with nanowire morphology by using polyvinyl pyrrolidone as structure-directing agent. The obtained NiCo2O4/Co3O4 nanocomposite shows better electrochemical performance than pure NiCo2O4 due to mainly two reasons: i) a strong synergistic effect between NiCo2O4 and Co3O4, which enhances the Li+ diffusion rate as well as lower the charge-transfer resistance, and ii) the involvement of Co3O4 to contribute to the total capacity due to its high electrochemical activity. However, the performance of a NiCo2O4/Co3O4 nanocomposite electrode starts degrading after 400 cycles while pure NiCo2O4 maintains steady performance. Since the NiCo2O4/Co3O4 nanocomposite sample shows high porosity, it is believed that the obtained nanowire morphology cannot tolerate volume variations, which are generally triggered off during repeated Li+ (de-)insertion at long-term cycling. Therefore, the obtained results bring new insights in terms that there is a sweet spot between Li+ diffusion and high porosity in utilizing Co3O4 within a nanocomposite. This study is of guidance to shed the light on the research of ternary transition metal oxide nanocomposite materials for lithium-ion batteries.
536 _ _ |a 1221 - Fundamentals and Materials (POF4-122)
|0 G:(DE-HGF)POF4-1221
|c POF4-122
|f POF IV
|x 0
536 _ _ |a BACCARA - Battery and superCapacitor ChARActerization and testing (608491)
|0 G:(EU-Grant)608491
|c 608491
|f FP7-ENERGY-2013-1
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Adhitama, Egy
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 2
|u fzj
700 1 _ |a Placke, Tobias
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rai, Alok Kumar
|0 0000-0003-0299-4355
|b 4
|e Corresponding author
773 _ _ |a 10.1002/batt.202200465
|g Vol. 6, no. 3, p. e202200465
|0 PERI:(DE-600)2897248-X
|n 3
|p e202200465
|t Batteries & supercaps
|v 6
|y 2023
|x 2566-6223
856 4 _ |u https://juser.fz-juelich.de/record/1024914/files/Batteries%20Supercaps%20-%202022%20-%20Tomar%20-%20Insights%20in%20Utilizing%20NiCo2O4%20Co3O4%20Nanowires%20as%20Anode%20Material%20in%20Lithium%E2%80%90Ion.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024914/files/Batteries%20Supercaps%20-%202022%20-%20Tomar%20-%20Insights%20in%20Utilizing%20NiCo2O4%20Co3O4%20Nanowires%20as%20Anode%20Material%20in%20Lithium%E2%80%90Ion.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024914/files/Batteries%20Supercaps%20-%202022%20-%20Tomar%20-%20Insights%20in%20Utilizing%20NiCo2O4%20Co3O4%20Nanowires%20as%20Anode%20Material%20in%20Lithium%E2%80%90Ion.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024914/files/Batteries%20Supercaps%20-%202022%20-%20Tomar%20-%20Insights%20in%20Utilizing%20NiCo2O4%20Co3O4%20Nanowires%20as%20Anode%20Material%20in%20Lithium%E2%80%90Ion.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/1024914/files/Batteries%20Supercaps%20-%202022%20-%20Tomar%20-%20Insights%20in%20Utilizing%20NiCo2O4%20Co3O4%20Nanowires%20as%20Anode%20Material%20in%20Lithium%E2%80%90Ion.jpg?subformat=icon-640
|x icon-640
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1024914
|p openaire
|p VDB
|p ec_fundedresources
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|9 G:(DE-HGF)POF4-1221
|x 0
914 1 _ |y 2024
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2023-08-25
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BATTERIES SUPERCAPS : 2022
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2023-08-25
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2023-08-25
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2023-08-25
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BATTERIES SUPERCAPS : 2022
|d 2023-08-25
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21