001024916 001__ 1024916
001024916 005__ 20250203103450.0
001024916 0247_ $$2doi$$a10.3390/electricity4020009
001024916 0247_ $$2datacite_doi$$a10.34734/FZJ-2024-02566
001024916 0247_ $$2WOS$$aWOS:001187490200001
001024916 037__ $$aFZJ-2024-02566
001024916 082__ $$a621.3
001024916 1001_ $$00000-0003-1316-391X$$aAghsaee, Roya$$b0
001024916 245__ $$aData-Driven, Short-Term Prediction of Charging Station Occupation
001024916 260__ $$aBasel$$bMDPI$$c2023
001024916 3367_ $$2DRIVER$$aarticle
001024916 3367_ $$2DataCite$$aOutput Types/Journal article
001024916 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1712751816_24403
001024916 3367_ $$2BibTeX$$aARTICLE
001024916 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001024916 3367_ $$00$$2EndNote$$aJournal Article
001024916 520__ $$aEnhancing electric vehicle infrastructure by forecasting the availability of charging stations can boost the attractiveness of electric vehicles. The transportation sector plays a crucial role in battling climate change. The majority of available prediction algorithms either achieve poor accuracy or predict the availability at certain points in time in the future. Both of these situations are not ideal and may potentially hinder the model’s applicability to real-world situations. This paper provides a new model for estimating the charging duration of charging events in real time, which may be used to estimate the waiting time of users at fully occupied charging stations. First, the prediction is made using the random forest regressor (RF), and then the prediction is enhanced utilizing the findings of the RF model and real-time information of the currently occurring charging events. We compare the proposed method with the RF model, which is the approach’s foundational model, and the best-performing prediction model of the light gradient boosting machine (LightGBM). Here, we make use of historical information of charging events gathered from 2079 charging stations across Germany’s 4602 fast-charging connectors. To reduce data bias, we specifically simulate prediction requests for 30% of the charging events with various characteristics that were not trained with the model. Overall, the suggested method performs better than both the RF and the LightGBM. In addition, the model’s structure is adaptable and can incorporate real-time information on charging events.
001024916 536__ $$0G:(DE-HGF)POF4-1223$$a1223 - Batteries in Application (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001024916 588__ $$aDataset connected to DataCite
001024916 7001_ $$00000-0002-2763-659X$$aHecht, Christopher$$b1$$eCorresponding author
001024916 7001_ $$00000-0001-7754-3933$$aSchwinger, Felix$$b2
001024916 7001_ $$00000-0003-2216-9432$$aFiggener, Jan$$b3
001024916 7001_ $$00000-0001-6169-2942$$aJarke, Matthias$$b4
001024916 7001_ $$0P:(DE-Juel1)172625$$aSauer, Dirk Uwe$$b5
001024916 773__ $$0PERI:(DE-600)3037251-3$$a10.3390/electricity4020009$$gVol. 4, no. 2, p. 134 - 153$$n2$$p134 - 153$$tElectricity$$v4$$x2673-4826$$y2023
001024916 8564_ $$uhttps://juser.fz-juelich.de/record/1024916/files/Data-Driven%2C%20Short-Term%20Prediction%20of%20Charging%20Station%20Occupation.pdf$$yOpenAccess
001024916 8564_ $$uhttps://juser.fz-juelich.de/record/1024916/files/Data-Driven%2C%20Short-Term%20Prediction%20of%20Charging%20Station%20Occupation.gif?subformat=icon$$xicon$$yOpenAccess
001024916 8564_ $$uhttps://juser.fz-juelich.de/record/1024916/files/Data-Driven%2C%20Short-Term%20Prediction%20of%20Charging%20Station%20Occupation.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
001024916 8564_ $$uhttps://juser.fz-juelich.de/record/1024916/files/Data-Driven%2C%20Short-Term%20Prediction%20of%20Charging%20Station%20Occupation.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
001024916 8564_ $$uhttps://juser.fz-juelich.de/record/1024916/files/Data-Driven%2C%20Short-Term%20Prediction%20of%20Charging%20Station%20Occupation.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
001024916 909CO $$ooai:juser.fz-juelich.de:1024916$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001024916 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172625$$aForschungszentrum Jülich$$b5$$kFZJ
001024916 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1223$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001024916 9141_ $$y2024
001024916 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001024916 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2023-04-12T14:57:21Z
001024916 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2023-04-12T14:57:21Z
001024916 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001024916 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2023-04-12T14:57:21Z
001024916 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2023-08-28
001024916 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2023-08-28
001024916 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001024916 9801_ $$aFullTexts
001024916 980__ $$ajournal
001024916 980__ $$aVDB
001024916 980__ $$aUNRESTRICTED
001024916 980__ $$aI:(DE-Juel1)IEK-12-20141217
001024916 981__ $$aI:(DE-Juel1)IMD-4-20141217